Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/312957 
Erscheinungsjahr: 
2024
Quellenangabe: 
[Journal:] Contemporary Economics [ISSN:] 2300-8814 [Volume:] 18 [Issue:] 3 [Year:] 2024 [Pages:] 336-351
Verlag: 
University of Finance and Management in Warsaw, Faculty of Management and Finance, Warsaw
Zusammenfassung: 
We study the problem of selecting a sparse, mean reverting portfolio from a universe of assets using simulated annealing (SA). Assuming that assets follow a first order vector autoregressive process (VAR(1)), we make a number of improvements in existing methods. First, we extend the underlying asset dynamics to include a time-independent additive term, thereby enriching the model's applicability. Second, we introduce Extreme Learning Machine (ELM) to decide whether to apply SA or settle for the much faster greedy solution. Finally, we improve the SA method by better calibration of the initial temperature and by determining the exact value of the weights within a selected dimension using the Rayleigh quotient. On real data, these changes result in more than 90% improvement in run time on average and 4.78% improvement in optimized mean reversion in our simulations. We also test the trading performance of our method on both simulated and real data and managed to achieve positive mean trading results in both cases.
Schlagwörter: 
sparse portfolios
mean reverting portfolios
simulated annealing
extreme learning machine
machine learning
JEL: 
C65
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe
769.5 kB





Publikationen in EconStor sind urheberrechtlich geschützt.