Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/269949 
Erscheinungsjahr: 
2020
Quellenangabe: 
[Journal:] Cogent Economics & Finance [ISSN:] 2332-2039 [Volume:] 8 [Issue:] 1 [Article No.:] 1802806 [Year:] 2020 [Pages:] 1-49
Verlag: 
Taylor & Francis, Abingdon
Zusammenfassung: 
We employ the Markov Regime-Switching GARCH (MRS- GARCH) family models under the normal, Student's t-, and GED distributions to measure the uncertainty of the industry index returns (IIR) of Tehran Stock Exchange over the period of 2013-2019. The models distinguish between two different regimes in both conditional mean and conditional variance. The results show that the MRS-EGARCH-in-mean (MRS-EGARCH-M) models under GED and Student's t-distributions have the best performance to model the IIR volatility. We find evidence of regime-switching behaviour in Iran's stock market. After removing the forecastable component (expected variation) from the best fitted models, we measure the time series of the IIR uncertainty (unforecastable component) and estimate the impact of exchange rate fluctuations on them using an autoregressive distributed lag (ARDL) model. We find that foreign exchange rate fluctuations have a significant and distinct impact on the IIR uncertainty across various regimes. The results show that the exchange rate generally has a negative and positive impact on the IIR uncertainty for export and import-oriented industries, respectively, under both regimes.
Schlagwörter: 
Markov regime-switching
stock market
uncertainty
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.