Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/239059 
Autor:innen: 
Erscheinungsjahr: 
2019
Quellenangabe: 
[Journal:] Journal of Risk and Financial Management [ISSN:] 1911-8074 [Volume:] 12 [Issue:] 4 [Publisher:] MDPI [Place:] Basel [Year:] 2019 [Pages:] 1-9
Verlag: 
MDPI, Basel
Zusammenfassung: 
We use the concept of coarsened posteriors to provide robust Bayesian inference via coarsening in order to robustify posteriors arising from stochastic frontier models. These posteriors arise from tempered versions of the likelihood when at most a pre-specified amount of data is used, and are robust to changes in the model. Specifically, we examine robustness to changes in the distribution of the composed error in the stochastic frontier model (SFM). Moreover, coarsening is a form of regularization, reduces overfitting and makes inferences less sensitive to model choice. The new techniques are illustrated using artificial data as well as in a substantive application to large U.S. banks.
Schlagwörter: 
bayesian analysis
productivity and efficiency
robustness
stochastic frontier models
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe
2.14 MB





Publikationen in EconStor sind urheberrechtlich geschützt.