Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/209386 
Erscheinungsjahr: 
2019
Quellenangabe: 
[Editor:] Jahn, Carlos [Editor:] Kersten, Wolfgang [Editor:] Ringle, Christian M. [Title:] Digital Transformation in Maritime and City Logistics: Smart Solutions for Logistics. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 28 [ISBN:] 978-3-7502-4949-3 [Publisher:] epubli GmbH [Place:] Berlin [Year:] 2019 [Pages:] 3-24
Verlag: 
epubli GmbH, Berlin
Zusammenfassung: 
Purpose: The bulk cargo shipping industry is characterized by high cost pressure. Chartering vessels at low prices is important to increase the margin of transporting cargo. This paper proposes a three-step, AI-based methodology to support this by forecasting the number of available ships in a region at a certain time. Methodology: Resulting from discussions with experts, this work proposes a threestep process to forecast ship numbers. It implements, compares and evaluates different AI approaches for each step based on sample AIS data: Markov decision process, extreme gradient boosting, artificial neural network and support vector machine. Findings: Forecasting ship numbers is done in three steps: Predicting the (1) next unknown destination, (2) estimated time of arrival and (3) anchor time for each ship. The proposed prediction approach utilizes Markov decision processes for step (1) and extreme gradient boosting for step (2) and (3). Originality: The paper proposes a novel method to forecast the number of ships in a certain region. It predicts the anchor time of each ship with an MAE of 5 days and therefore gives a good estimation, i.e. the results of this method can support ship operators in their decision-making.
Schlagwörter: 
AIS data
Ship-supply forecasting
Dry bulk cargo
Artificial intelligence
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by-sa Logo
Dokumentart: 
Conference Paper

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.