Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/279268 
Erscheinungsjahr: 
2023
Schriftenreihe/Nr.: 
CESifo Working Paper No. 10518
Versionsangabe: 
This Version: August 2023
Verlag: 
Center for Economic Studies and ifo Institute (CESifo), Munich
Zusammenfassung: 
Can algorithms help people detect deception in high-stakes strategic interactions? Participants watching the pre-play communication of contestants in the TV show Golden Balls display a limited ability to predict contestants' behavior, while algorithms do significantly better. We provide participants algorithmic advice by flagging videos for which an algorithm predicts a high likelihood of cooperation or defection. We find that the effectiveness of flags depends on their timing: participants rely significantly more on flags shown before they watch the videos than flags shown after they watch them. These findings show that the timing of algorithmic feedback is key for its adoption.
Schlagwörter: 
detecting lies
machine learning
cooperation
experiment
JEL: 
D83
D91
C72
C91
Dokumentart: 
Working Paper
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.