
Serra-Garcia, Marta; Gneezy, Uri

Working Paper

Improving Human Deception Detection Using
Algorithmic Feedback

CESifo Working Paper, No. 10518

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Serra-Garcia, Marta; Gneezy, Uri (2023) : Improving Human Deception
Detection Using Algorithmic Feedback, CESifo Working Paper, No. 10518, Center for Economic
Studies and ifo Institute (CESifo), Munich

This Version is available at:
https://hdl.handle.net/10419/279268

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/279268
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


   

10518 
2023 

Original Version: June 2023 
This Version: August 2023 

Improving Human Deception 
Detection Using Algorithmic 
Feedback 
Marta Serra-Garcia, Uri Gneezy 



Impressum: 
 

CESifo Working Papers 
ISSN 2364-1428 (electronic version) 
Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo 
GmbH 
The international platform of Ludwigs-Maximilians University’s Center for Economic Studies 
and the ifo Institute 
Poschingerstr. 5, 81679 Munich, Germany 
Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de 
Editor: Clemens Fuest 
https://www.cesifo.org/en/wp 
An electronic version of the paper may be downloaded 
· from the SSRN website: www.SSRN.com 
· from the RePEc website: www.RePEc.org 
· from the CESifo website: https://www.cesifo.org/en/wp 

mailto:office@cesifo.de
https://www.cesifo.org/en/wp
http://www.ssrn.com/
http://www.repec.org/
https://www.cesifo.org/en/wp


CESifo Working Paper No. 10518 
 
 
 

Improving Human Deception Detection Using 
Algorithmic Feedback 

 
 

Abstract 
 
Can algorithms help people detect deception in high-stakes strategic interactions? Participants 
watching the pre-play communication of contestants in the TV show Golden Balls display a 
limited ability to predict contestants’ behavior, while algorithms do significantly better. We 
provide participants algorithmic advice by flagging videos for which an algorithm predicts a high 
likelihood of cooperation or defection. We find that the effectiveness of flags depends on their 
timing: participants rely significantly more on flags shown before they watch the videos than flags 
shown after they watch them. These findings show that the timing of algorithmic feedback is key 
for its adoption. 
JEL-Codes: D830, D910, C720, C910. 
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1 Introduction

Machine learning algorithms are often developed to assist people in making predictions. Do

people use the advice algorithms provide? The empirical evidence examining the effects

of algorithmic advice on decision-making provides contradictory answers to this question.

Some studies find that individuals are likely to adopt algorithmic advice (e.g., Bundorf et

al., 2019), while others find that they largely ignore it (e.g., Glaeser et al., 2022). Comparing

algorithmic to human advice, some papers find “algorithmic appreciation” (e.g., Logg et al.,

2019), while others find hesitancy to follow algorithmic advice (e.g., Longoni et al., 2019).

Given the mixed results, understanding under what conditions people will use algorithmic

advice is important in making such tools useful and in advancing the science of human-

machine interactions.

We propose that the mixed results in the literature may be reconciled by considering the

timing of the advice. Timing is an important choice in information design (Kamenica, 2019)

that can influence how algorithms are perceived and hence adopted. When individuals receive

algorithmic advice before forming their own belief, they may use it significantly more than

when they receive it after forming their initial belief. The reason is that, when algorithmic

advice is presented first, individuals can look for evidence that supports the advice and weigh

it strongly when forming their own belief. By contrast, when people first form their own

belief, they put relatively more weight on their own assessment and less on the algorithmic

advice.

To test how timing affects the adoption of algorithmic advice, we design an experiment

in which participants need to predict whether people in video clips are being truthful or

deceptive about their intentions. Predicting behavior when there is an incentive to mislead

others is important in many situations. Consider a politician who posts a video with cam-

paign promises, or a salesperson who promotes a product with a video featuring its qualities.

Because the politician’s and salesperson’s interests might not be aligned with those of view-

ers, it can be difficult for viewers to know whether to trust such promises. Research suggests

that people display a limited ability to detect deception and their predictions are often not

much better than chance (see, e.g., Ockenfels and Selten, 2000; Belot et al., 2012; Konrad et
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al., 2014; Belot and van de Ven, 2017; Dwenger and Lohse, 2019; Serra-Garcia and Gneezy,

2021; for a meta-analysis, see Bond and DePaulo, 2006).

The video clips we use are from the high-stakes prisoner’s dilemma game played within

the TV show Golden Balls, with an average prize of over GBP 13,000 (or $26,000 in 2007

terms). In this show, contestants play a version of the prisoner’s dilemma: They first have a

brief conversation with each other and then decide simultaneously “steal” or “split.” If both

choose split, they share the prize. If one chooses split and the other chooses steal, the player

who chooses steal wins the entire prize and the other wins nothing. And if both choose steal,

neither wins money.

While contestants in the TV show elect steal 46% of the time, they almost always

make non-binding pre-play statements in their conversations, declaring their intention to

choose split. The challenge is to predict which contestants will nevertheless choose steal.

Forming accurate beliefs in this setup is complicated by the heterogeneity in lying costs and

preferences to cooperate (e.g., Gneezy, 2005; Fischbacher and Föllmi-Heusi, 2013; Abeler

et al., 2019).1 Beliefs could be influenced by several features of the conversation, including

the content of the communication (e.g., whether the counterpart promised to cooperate)

and nonverbal factors (e.g., facial expressions). If participants know how these features are

associated with behavior, they could help in predicting the behavior of contestants.

In a first experiment, we show participants display a limited ability to predict contestant

behavior, when watching 20 video clips of pre-play communication between contestants.

Using a standard metric of classification accuracy, the area under the receiver operating

curve (AUC), we find that the AUC for participant predictions is 0.54, which is significantly

higher than that of a random classifier (0.50), but by a small margin. This finding holds

even if participants are provided with an opportunity to learn about the actual choice of the

1If contestants have no costs associated with lying, pre-play communication may result in both players
claiming they will cooperate (choosing split), but in equilibrium, these claims are cheap talk (Crawford and
Sobel, 1982; Farrell and Rabin, 1996). Experimental data do not always support the simplifying assumption
of no lying costs, and the decisions of some individuals is consistent with them experiencing a psychological
cost associated with lying (e.g., Gneezy, 2005; Fischbacher and Föllmi-Heusi, 2013; Gneezy et al., 2013). If
lying is costly enough, players’ promises could be informative (Charness and Dufwenberg, 2006). In addition,
players may have other non-selfish preferences. For example, players may prefer to match their behavior to
that of their counterpart: cooperate if they do and defect if they do not (e.g., Rabin 1993; Dufwenberg and
Kirchsteiger, 2004). In such cases, players may promise to cooperate and follow up on this promise.
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contestant behavior after each prediction.

A simple ML algorithm provides a significant improvement in accuracy relative to our

participants, with an AUC of 0.71. The ML algorithm’s predcitions are based on visual,

vocal, and verbal features of the contestants in the videos, including features such as promise-

making, which has been shown to be important in this context (Turmunkh et al., 2019). Its

predictions are strongly correlated with actual behavior, with a correlation of approximately

0.9, while participant predictions only exhibit a weak correlation of between 0.05 and 0.11.

Given its accuracy relative to participants in our setting, algorithmic advice has the

potential to improve participant predictions. Our main research question is how to provide

algorithmic advice such that it will be used by participants. We test whether the effectiveness

of advice depends on when they are presented to participants.

The algorithmic advice we study is based on flagging extreme predictions of the algo-

rithm, informing participants that an algorithm predicted the person in the clip they are

watching is very likely or very unlikely to choose steal (with more than 70% chance). We

chose to use feedback in the form of flagging for three main reasons. First, flagging is a rela-

tively simple way of providing feedback and it is easy to understand. Second, ML predictions

are more reliable in the extreme cases in which the algorithm provides high probability for

it. For such extreme predictions, we find that the algorithm is right in 74% of cases, while

participants were correct between 51% and 53% of the cases. Third, such flags are easy to

apply in practice and similar real-world flagging procedures already exist.

In a second experiment, participants watch 20 video clips and, in the treatments with

flagging, four of them are flagged. Two of the videos are flagged as contestants who are “very

likely to steal,” and two as “very likely to split.” Participants see the flag prior to watching

the video (Flag-Before treatment), or after watching the video (Flag-After treatment), or

do not see flags (Control). Theoretically, the predictions should not depend on the timing

of the flags, as in both treatments with flags participants face the same information: their

assessment of the video and the ML feedback.

But, the data show that introducing flags significantly affects participant predictions.

Flags shown before the participant watches the video lead to more than a 5-fold increase in

the difference in participant beliefs between videos flagged as very high and those flagged
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as very low chance of choosing steal. Participants also exhibit a significant increase in the

accuracy of their predictions. By contrast, when flags are shown after the participant watches

the video, the effect on predictions is significantly weaker, and the impact on accuracy is not

significant.

Why is there a differential impact of algorithmic advice provided before or after partic-

ipants watch the video? Our hypothesis was that timing of advice would affect beliefs due

to confirmation bias, the tendency of people to actively search for and interpret information

that matches their beliefs (Nickerson, 1998). In psychology, the confirmation bias literature

has demonstrated that people tend to select information that supports their views, often

putting less weight on contradicting information. People also tend to interpret ambiguous

evidence as supporting their existing beliefs (e.g., Mynatt et al., 1977; Baron, 2000). In

economics, the literature has focused on biased updating when receiving new signals, finding

evidence for it in some cases (e.g., Charness and Dave, 2017), but not always (e.g., Eil and

Rao, 2011; Möbius et al., 2022; see Benjamin, 2019, for a review).

Confirmation bias would suggest that the first piece of information that participants

receive becomes their prior, and they rely less on the information received later, leading to

a primacy effect. Consistent with this explanation, participants report to overwhelmingly

rely on their own beliefs and are more confident in their own ability when they first form

their beliefs (in Flag-After). Though timing does not affect the perceived accuracy of the

algorithm, participants’ increase in confidence leads them to believe that they are as accurate

or significantly more accurate than the algorithm. By contrast, when participants see the

flag first (in Flag-Before), they are more likely to report that they trust the algorithm and

combine its advice with their own beliefs.

The order of flags may also affect participants’ behavior if they wish to minimize the

time spent in making predictions (e.g., Dykstra et al., 2022). When they see the flag before

the video, participants could choose to simply follow it, without forming their own beliefs.

Leveraging time data, we do not find evidence consistent with this behavior. The timing of

advice does not affect the time spent on each video, and participants spend significantly more

time watching the video than required, and double than the average length of contenstant

conversations.
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Several papers in psychology have studied individuals’ preferences for algorithmic ad-

vice relative to human advice (for a review, see Chugunova and Sele, 2022). When advice

is presented early in the judgment process, several studies have found that individuals tend

to follow the algorithmic advice (e.g., Dijkstra et al., 1998; Dijkstra, 1999; Promberger and

Baron, 2006; Dietvorst et al., 2018). When individuals first form a judgment in their mind,

Longoni et al. (2019) document hesitancy to follow algorithmic advice. Our findings com-

plement the existing literature by focusing on when algorithmic advice is likely to influence

individual decision-making.

Understanding the importance of the timing of the algorithmic advice could help orga-

nizations improve the adoption of advice. Our findings indicate that to increase its impact,

algorithmic advice should be provided to people as soon as possible in the decision-making

process, even if standard theoretical frameworks would not predict that the order will in-

fluence beliefs. The effectiveness of feedback will be lower when people are already familiar

with the situations and have formed an initial belief. Such insight is relevant for a range

of applications in which algorithmic advice is used, including predictive modelling within

organizations and decision-making by experts with the aid of algorithms.

Consider again the politicians who posts videos with campaign promises or salespersons

making promises about their products. In the context of deception-detection, real-world

flagging procedures already exist. Some websites, including YouTube and TikTok, have al-

gorithms that analyze videos and teams that check whether videos are in line with guidelines.

In the context of online shopping, some companies (e.g., ReviewMeta) offer ML assistance

for text-based reviews. Their algorithms scan publicly available data regarding the reviews

and identify unnatural patterns. As in our paper, their algorithm is then used for flagging

in the form of the most and least Trusted Reviews.

Our results suggest that such the timing of flags is crucially important. Flagging content

before viewers make their own judgment will have stronger effects on their beliefs than flags

appear after the video has been watched or the text read. Our results thus contribute to

understanding how to design the timing of algorithmic advice, such that its effectiveness and

use by humans is substantially improved.
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2 The Setting: The Golden Balls TV Show

Golden Balls is a TV show that was broadcasted in the UK from 2007 to 2009. In the first

three rounds of play in the show, contestants make claims about their private information

on the potential prize, after which they discuss and vote against each other. The jackpot is

determined in the third round.

In this paper, we focus on contestant behavior in the fourth and last round of the show,

which is a high-stakes prisoner’s dilemma with an average prize of over GBP 13,000. In this

final round, the two contestants simultaneously and privately choose split or steal. If they

both choose split, they share the prize equally. If they both choose steal, neither receives

anything. If one contestant chooses split while the other chooses steal, the former receives

nothing while the latter receives the entire prize. The payoff matrix is presented in Table 1.

Table 1: Payoff Matrix in the Prisoner’s Dilemma of Golden Balls

Contestant B

Split Steal

Contestant A
Split 50%, 50% 0%, 100%

Steal 100%, 0% 0%, 0%

Prior research has documented several interesting behavioral regularities in this gameshow.

54% of contestants choose split in this high-stakes environment (e.g., Belot et al., 2012; van

de Assem et al., 2012). Women choose split more often than men, particularly young male

contestants, and attractiveness increases cooperation in mixed-gender pairs (van de Assem

et al., 2012; Belot et al., 2012; Darai and Gratz, 2013; see also Dreber et al., 2013).

Prior to making the split or steal decision, contestants engage in a brief conversation in

which they discuss their intentions with each other. During this pre-play communication,

which lasts approximately 20 seconds, contestants typically talk about their intention to

choose split or try to get assurances that the other contestant will choose split. Turmunkh

et al. (2019) find that over 83% of conversations feature a statement involving the intention

to choose split (see also Belot et al., 2009). Among these statements, when contestants told

malleable lies (statements that are malleable to ex-post interpretation as truths), they were

more likely to choose steal.
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The input for our analysis is the videos of the final conversation prior to the split or

steal decision (last round of play in each episode). These videos were edited to facilitate the

facial analysis, removing all shots that did not display the contestants. The removed shots

included shots of the audience and shots including the host. Details are provided in Online

Appendix B.

2.1 Facial Analysis, Voice, and Speech Features

The behavior and conversation of a contestant prior to the cooperation decision can be

captured by nonverbal as well as verbal features. By nonverbal features, we refer to facial

movements and expressions, which can reflect emotions. By verbal features, we refer to what

contestants said and how they said it.

People’s choices may be linked to their emotions. For example, people who lie may feel

fear and/or guilt and overall fewer positive emotions than those who tell the truth (Ekman,

2009). Facial expressions have been used recently in experimental games to measure how

players strategically display emotions, for example, in the ultimatum game (e.g., van Leeuwen

et al., 2018; Chen et al., 2019), or to test how their smiles relate to behavior in the trust game

(e.g., Centorrino et al., 2015a and 2015b). Serra-Garcia and Gneezy (2021) use simple probit

models to relate facial expressions to truth-telling by experimental participants. In that

study, participants were recorded in 30-second videos making either true or false statements.

Several nonverbal features were associated with the sender’s truthfulness. Hu and Ma (2020)

use nonverbal and verbal features to estimate the positiveness in videos of startup pitches

and relate these emotions to funding decisions.

2.1.1 Nonverbal Features

We use the software FaceReader to analyze the facial expressions of each contestant in our

sample of Golden Balls videos, during their conversation prior to the split or steal decision.

FaceReader is a facial-analysis software that measures, over time, the six basic (“universal”)

emotions described by Ekman (1970): happy, sad, angry, surprised, scared, disgusted, as well

as neutral (Bijlstra and Dotsch, 2011). The software also analyzes arousal, which measures
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the level of activity on the face. Values are between 0 and 1.

FaceReader additionally reports several facial movements. In each frame, it measures

whether the contestant’s mouth and eyes are open, the position of eyebrows, and the direction

of gaze. The software also measures the orientation of the head along three axes (in degrees)

and provides a measure of the quality of the video, which is between 0 and 1. Figure 1 shows

an example of the software analyzing a participant in the TV show.

Our main algorithm uses the average of each contestant’s emotions and arousal and the

average rate of facial movements. Additional analyses using the standard deviation, mini-

mum and maximum of each feature do not increase predictive accuracy (and are described

in Online Appendix C).

Figure 1: Example of FaceReader Analysis

2.1.2 Verbal Features

Contestants’ verbal behavior, measured by speech (what they say) and voice (how they say

it), could provide cues on their final choice between split and steal. We include several

aspects of speech. First, we focus on two simple features: word count and sentiment score.

Past research shows these easy-to-interpret features correlate with lying (Serra-Garcia and

Gneezy, 2021). Second, in the case of Golden Balls, previous work suggests the prize at stake

matters. Third, we also include whether a contestant makes explicit or implicit promises,

based on the classification by Turmunkh et al. (2019).

For voice, we include two simple features that describe the contestants’ voice: intensity
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and pitch (measured using Praat, by Boersma and Weenink (2020), a standard phonetics

software). Voices are analyzed through their sound waves. The intensity of a sound is the

power per unit area carried by the wave and is an approximate measure of the loudness

of a contestant’s voice. Pitch captures how high or low a sound is. It is defined as the

fundamental frequency of each sound wave and is measured in hertz. A detailed description

on the meaning of these features is included in Online Appendix B.

2.2 Descriptive Statistics: Verbal and Nonverbal Behaviors

The sample of Golden Balls videos consists of 430 contestants in 215 episodes, from four of

the show’s six seasons. The average age of contestants was 36 years, and 54.0% were women.

The average prize was GBP 13,444, and in 46% of the cases contestants chose steal.2

FaceReader is best able to analyze facial expressions on straight-ahead faces with proper

lighting. As such, the Golden Balls videos are not the optimal settings in which FaceReader

can be run. For several participants, some frames could not be analyzed by the software,

and in some cases, the software captured no frames at all. Our sample for analysis focuses

on all the contestants for whom FaceReader analyses of emotional states could be conducted

for at least one frame, resulting in 430 contestants. On average, 56.4% of the frames for each

of these contestants could be read and the emotions analyzed by FaceReader. We find this

feature important in showing the applicability of our methods to real world settings that

are not created just for the use of such software. A documented problem with the software

is that it is less accurate when reading non-Caucasian faces, children’s faces, or faces over

the age of 65 (Loijens et al., 2016). A large majority of the Golden Balls participants are

Caucasian and between the ages of 18 and 65. More details on FaceReader are provided in

Online Appendix B.

Figure 2 below shows summary statistics for contestants in the entire dataset, comparing

those who chose split to those who chose steal. We provide a detailed comparison in Online

Appendix D. Descriptively, male contestants were 10% more likely to choose steal, whereas

2The characteristics of the sample we use are similar to those in Turkmukh et al. (2019). In the 284
episodes they study, 54% of the contestants are women, the average age is 37 years old, the average prize is
GBP 13,510, and 48% of the contestants choose to steal.
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contestants whose age was above median were 30% less likely to choose steal. In their

conversations with their opponent, contestants who chose steal expressed different emotions.

Contestants who were relatively more angry, sad, and disgusted were more likely to choose

steal. Those who were more happy, surprised, or scared were less likely to choose steal.

There was also a difference in verbal communication between contestants who chose split

and those who chose steal. Contestants who made explicit and unconditional promises were

less likely to choose steal. Contestants who said more words and expressed more positive

sentiment in their words were more likely to choose steal. Those who had a higher pitch in

their voice, and lower intensity, which implies their voice was quieter, were also more likely

to choose steal.

2.3 Measuring predictive accuracy

To measure predictive accuracy, we use the predicted probability of steal choice, either by

participants in the experiments or by the ML algorithm, and compare it with the actual

decision of the contestant. We use two measures of accuracy. The first and simplest measure

captures whether the prediction is correct, using a 0.50 threshold. A prediction is correct

if the contestant chose split (steal) and the predicted likelihood of split (steal) is above 0.5,

and 0 otherwise.

Second, we estimate the AUC, which is the area under the receiver operating curve

(ROC). Whereas the fraction of correct predictions applies a threshold of 0.50, the ROC

presents the rate of false positives (Type I errors) on the x-axis against the rate of true

positives (1-Type II errors) on the y-axis, for different threshold rates (from 0 to 1). A

true positive is defined as correctly predicting that the contestant will steal, whereas a false

positive is defined as incorrectly predicting that the contestant will steal. An ideal ROC

curve will have low false-positive rates and high true-positive rates and would be as far as

possible from the 45-degree line, which would be how a “no information” classifier would

perform. Random guessing would yield an AUC of 0.5, and the closer the AUC is to 1, the

higher the accuracy of the model.3

3We also explore precision-recall measures. Precision is the rate of true positives over the sum of true
and false positives and recall is the rate of true positives over the sum of true positives and false negatives.
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Figure 2: Difference in Steal Likelihood by Contestant Characteristics and Behavior
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3 Individual and Algorithmic Predictive Ability

3.1 Individual Ability: Experimental Design

We elicited the beliefs of participants regarding whether contestants would choose split or

steal. Each participant saw 20 randomly drawn videos and made 20 guesses. Table 2 provides

These measures deliver similar results.
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an overview of the main experiments we conducted.

Experiment 1 consisted of two treatments (for this and all other instructions, see Online

Appendix A). In the No Learning treatment, participants watched the 20 videos and provided

their prediction without learning the actual decision contestants made. In the Learning

treatment, after providing their prediction, participants learned the contestant’s choice of

split or steal. The experiment was conducted online in two waves (pre-registration #39504

and #73632) on Prolific Academic. In the first wave (N=258), participants were assigned

to the No Learning treatment and the videos presented to participants in this wave were

drawn from the test sample (i.e., videos not used to train the ML algorithm). The second

wave included both the No Learning (N = 52) and Learning treatment (N = 159). We

expanded the set of videos presented to participants to include both videos from the test

and the training sample. The fraction of correct predictions and the AUC in the No Learning

treatment did not vary significantly across waves (p-value = 0.84 for correct guesses and p-

value=0.45 for the AUC).4

To examine the robustness of results, and whether accuracy would vary when partic-

ipants’ behavior is closely monitored, we ran an additional wave of the experiment in a

laboratory, at west coast university in the US. Participants were assigned to the No Learn-

ing treatment (N = 146). Their accuracy did not differ significantly from that in the online

experiment (p-value = 0.97 for correct guesses and p-value = 0.62 for the AUC). Hence, we

pool these participants with the online sample in all analyses.

Experiment 2 examines the effect of “flagging” videos that an ML algorithm predicts

have a high or low chance of steal choice (pre-registration #107116, on Prolific Academic).

This experiment consisted of three treatments: Control, Flag-Before, and Flag-After. The

control group did not provide participants with any information about the ML algorithm’s

prediction.5

In the Flag-Before and Flag-After treatments, participants were told that the researchers

4In Experiment 1, an additional group of participants only watched muted videos of the contestant about
whom the participant made a prediction (nonverbal-information treatment). The results are presented in
Online Appendix D. In this nonverbal-information treatment, participants’ accuracy was not better than
chance, with an AUC of 0.49, and significantly worse than in the verbal treatment (χ2 test, p-value< 0.001).

5In an additional experiment, participants’ preferences to delegate predictions to the algorithm, for flagged
videos, were elicited. Over half of participants (54%) chose to delegate to the algorithm. Details are provided
in Online Appendix D.
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Table 2: Overview of Experiments

Experiment Description and Treatments N

1 Human Predictive Ability
- No Learning 456
- Learning 159

2 Timing of Algorithmic Feedback
- Control 204
- Flag-Before 202
- Flag-After 191

had used the contestants’ facial expressions and speech to train a standard ML algorithm

to predict choices. They were then told, “We used this algorithm to ‘flag’ four out of the

20 videos for which the algorithm either predicted that the contestant chose to split [or

steal] with very high chance or very low.” The flags were symmetric, flagging both high

likelihood of cooperation and defection. This approach differs from the use of flags in other

contexts with deception, which focus on flagging lies or deceptive content (e.g., Pennycook

et al., 2020). In the treatments with flags, participants did not know the accuracy of the

algorithm. We chose not to tell participants the accuracy because in most cases in which

individuals see flags in naturally occurring environments (e.g., flagged content online), the

accuracy is unknown. We elicited participants’ beliefs regarding accuracy at the end of the

experiment.

In the Flag-Before treatment, if the video was flagged, the flag was shown in the screen

prior to the screen showing the video. Then participants saw the video and submitted their

prediction on the same screen.

In the Flag-After treatment, participants watched the video first, were asked to think

about their guess, and on the next screen, they submitted their prediction. If the video was

flagged, they saw the flag on the screen in which they submitted their prediction. In all

cases, participants had to spend at least 20 seconds on the screen that displayed the video,

which is the average length of the pre-play conversations.

Since there is a separation between the screen in which participants watch the video and

the screen in which they submit their guesses in the Flag-After treatment, this separation

may have an effect on choice. To test for such an effect, we run two versions of the Control
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treatment. In one version, as in Flag-Before, participants submitted their guesses on the

same screen as they watched the video. In the other version, as in Flag-After, participants

submitted their guesses on the screen following that in which they watched the video. There

is no difference in predictions or accuracy across the two versions of the Control treatment

(p-value = 0.68 for predictions, and p-value = 0.37 for accuracy). We hence present both

versions of the Control treatment pooled together.

To identify the effect of flags at the video level, we used 20 videos. Among them, four

videos had an ML prediction of over a 70% likelihood of steal (high chance of steal), and four

videos for which it had predicted over a 70% likelihood of split (high chance of split). We

created two groups of videos that varied which videos were flagged to participants. In each

group, four videos were flagged. Two flags indicated a very high chance of steal, and two

indicated a very low chance of steal. This design implies that participants saw eight videos

that could have been flagged, but only four were flagged. Which four were flagged varied by

group. Following the actual accuracy of the algorithm, three out of four flags were correct.

Each participant was randomly allocated to one of the groups, such that we can measure, at

the video level, participants’ predictions for each video both when it is flagged and when it

is not (while other videos are flagged).

At the beginning of the experiment, participants were asked to read a description of

Golden Balls and the decision contestants faced. They were shown a video of the presenter

of the show explaining the rules governing the split or steal decision and were asked three

questions about the rules. As pre-registered, if they failed to answer any one of the questions

correctly, they were disqualified from participation. Overall, 1,212 participants answered the

control questions correctly.

Participants then received the instructions for the guessing task. We used a stochastic

scoring rule based on Holt and Smith (2009) and Karni (2009) to incentivize guesses. Specif-

ically, we asked participants to guess the likelihood that the contestant chose steal or split

(balanced), on a scale from 0 to 100. We refer to this guess as G. The receiver’s potential

bonus payment was $5. One randomly selected guess counted toward payment. For this

guess, the computer randomly drew a number R from 1 to 100. If R was smaller than or

equal to the participant’s G, they received $5 if their guess was correct, and $0 otherwise. If
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G was greater than R, the participant received $5 with chance R. We provided participants

with an example and asked two comprehension questions that the participants had to an-

swer correctly to be able to proceed. We wrote in the instructions that reporting their true

guess regarding the choice of the contestant will maximize the chance of earning their bonus

payment.

This stochastic rule is an adaptation of the Becker-DeGroot-Marschak method (Becker

et al., 1964) used to elicit probabilities instead of willingness to pay. It is simpler than the

binarized scoring rule and adequate for eliciting binary probabilities of events as in the case

of Golden Balls. By using this rule, we were able to obtain a precise prediction of the chance

the contestant chose split or steal (for reviews, see Schotter and Trevino, 2014; Charness et

al, 2021).6 ML models provide such a prediction, which allows for a comparison between the

participants and ML on their predictions. While this rule is more complex than an elicitation

rule that elicits a binary decision (e.g., the participant will split or steal), it results in similar

participant accuracy as the one observed in experiments on lie detection (e.g., Serra-Garcia

and Gneezy, 2021; for a review, see Bond and DePaulo, 2006).

After completing their 20 predictions, we elicited three beliefs from participants. First,

in the No Learning treatment of Experiment 1 and in Experiment 2 we elicited their estimate

of how many of their predictions were correct, using a 0.5 threshold. Second, we elicited their

estimated performance relative to other participants, by selecting the quartile of performance

to which they thought they belonged. Third, in Experiment 2, we elicited participants’ belief

regarding the algorithm’s accuracy, separately for when it indicated a high likelihood of steal

or a high likelihood of split. For each question, participants received a $1 bonus if their guess

was correct. Participants concluded the study by reporting their gender, age, and whether

they had seen the TV show before.

We recruited online participants through Prolific Academic (Peer et al., 2022), restrict-

ing the sample to people residing in the US. They needed to have a previous approval rate

of over 95% for studies completed on Prolific. All participants (online and in the lab) had

6Recently, Danz et al. (2022) highlighted that BSR could lead participants to report conservative beliefs.
To explore how much of a concern this possibility could be in our setting, we compare the distribution of
participants’ beliefs and the model’s guesses (see Online Appendix D). We observe a positive mass of beliefs
at both 0 and 1 for participants, suggesting that the incentives did not lead participants to guess away from
the extremes.
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to answer a question checking that they were not a robot. To check that participants could

listen to videos, they had to transcribe one sentence that was said in an audio file. They

could not participate in the study without correctly completing these checks, which were

presented at the very beginning (after they consented to participation).7

Across the two experiments, 51.8% of participants were female (51.6% in Experiment 1

online sample, 59.6% in Experiment 1 lab sample, and 50.1% in Experiment 2), average age

was 33.0 (30.0 in Experiment 1 online sample, 20.7 in Experiment 1 lab sample, and 38.3

in Experiment 2), and 89.9% (90.6% in Experiment 1 online sample, 87.0% lab sample, and

89.9% in Experiment 2) reported never having seen the TV show before the study.

3.2 Machine Learning Algorithm

Since the behavior of a contestant prior to the cooperation decision contains many differ-

ent nonverbal as well as verbal features, we use ML for predictive modeling of contestant

behavior. One can apply a variety of ML (or statistical learning) approaches, including

unsupervised and supervised learning. We focus on a supervised learning approach: general-

ized boosted regression trees (GBM, see Friedman, 2002). Existing prediction models often

present a tradeoff between interpretability and flexibility (e.g., Hastie et al., 2008). We focus

on GBMs because they are flexible, allow for nonlinearity, and they have been previously

found to have high predictive accuracy. We also estimate regularized logistic regression mod-

els with rigorous penalization (rigorous logistic lasso). This approach assumes linearity in

the predictors but is easier to interpret than GBM. The predictive accuracy of both methods

is similar. We focus on GBM in the main text and report results for rigorous logistic lasso

in Online Appendix C. Both prediction methods are widely used and available as standard

tools in existing software, which allows for easy replication and extension in future predictive

work.

In line with standard methods in the ML literature on prediction models, our analysis

is based on two main steps. First, we train an algorithm to predict the likelihood that a

contestant will choose steal. Then, we evaluate the algorithm’s ability to predict out of

7In wave 1 of Experiment 1, participants received $2.25 as their participation fee, in wave 2, they received
$3.00. Because of the increasing wages in Prolific, in Experiment 2 participants received $3.50.
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sample. For that purpose, we randomly split the sample into a training dataset (302 videos)

and a testing dataset (128 videos). We analyze whether ML models can reliably predict

split or steal decisions out-of-sample, only on the testing dataset. We present a detailed

description of the algorithm in Online Appendix C and use the REFORMS checklist (Kapoor

et al., 2023) to provide a detailed report of the ML method used (Appendix F). Descriptive

statistics on the training and the testing dataset are also presented in Online Appendix D.

3.3 Hypotheses

Our hypotheses are based on the pre-registration plan. The first hypothesis relates to the

literature discussed above which shows individuals display a limited ability to detect lies.

Our prediction was that, due to the complexity of the task, learning contestants’ decisions

after making predictions will not increase accuracy. By contrast, we hypothesized that ML

algorithms can detect features that correlate with choices across a large set of contestants

and yield a prediction function that is better than chance. This leads to Hypothesis 1:

Hypothesis 1: Algorithms will outperform participants in predicting behavior. Participants

will not be better than chance at predicting whether a contestant chooses split or steal, even

when given the opportunity to learn, while the ML algorithm will predict better than chance.

We also hypothesized that participants would believe they are better at predicting be-

havior than they actually are, both in absolute and in relative terms.

Hypothesis 2: Participants will be overconfident in their ability to predict behavior, both

in relative and in absolute terms.

Our third and main hypothesis regards the impact of ML feedback on behavior. Flags

provide information to participants based on the ML algorithm, and we therefore hypothe-

sized that flags will affect participants’ beliefs.

We further hypothesized that the timing of flags will be important. Flags will have

a stronger effect on participants who have not yet formed a belief about the likelihood of

steal or split (Flag-Before) relative to participants who first see the video and form a belief

prior to seeing the flag (Flag-After). The importance of order, or primacy effects, has been
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shown with human advice (e.g., Gneezy et al., 2020; Saccardo and Serra-Garcia, 2023). We

hypothesized that the effects of order would be present for algorithmic advice, and may be an

important determinant of individuals’ willingness to follow advice generated by algorithms.

By changing the order, we expected to affect the influence of flags on beliefs and thereby

observe a stronger increase in accuracy in Flag-Before than in Flag-After, given that flags are

accurate 75% of the time, while individuals display an accuracy that is only slightly above

chance.

Hypothesis 3: Participants’ predictions will be significantly affected by the flags based

on the algorithm’s prediction. Flags will be significantly more effective when shown before

rather than after the participant watches the video.

The extent to which participants follow the algorithm depends on how accurate they

believe the algorithm is. Participants knew the algorithm was fed features from a facial-

analysis software and speech analysis, which could miss certain features of communication

(e.g., body movements of the participants or handshakes) that could be observed by them

in the video. Hence, although learning about the algorithm’s prediction could be valuable,

we hypothesized that participants would believe the algorithm is only somewhat better than

them in predicting, and that the algorithm would make some mistakes. We hypothesized

that the timing of flags would not significantly affect beliefs about the algorithm’s accuracy,

because participants would not be (fully) aware that they were relying on the algorithm

differently in Flag-Before or Flag-After.

Hypothesis 4: Participants believe that ML algorithms are better than them at predicting

contestant behavior but can still make mistakes. Participants’ beliefs about the accuracy of

ML algorithms do not depend on the timing of flags.

4 Results

We start by presenting the accuracy of participants and algorithms, focusing on Experiment

1. We then examine how participants use flags based on the algorithmic predictions, focusing

on Experiment 2.
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4.1 Experiment 1: Predictive Performance of Participants and

ML Models

Participants achieve an average AUC of 0.54 (95% CI: 0.52 - 0.55) without learning and 0.52

with learning (95% CI: 0.50 - 0.54). The AUC is significantly different from chance without

learning (p-value< 0.001), though by only 4 percentage points, and marginally significantly

different from chance (p-value = 0.08) with learning.

Participants correctly guess the decisions of contestants 54.1% of the time without learn-

ing, and 51.8% of the time with learning (using the 50% threshold). These rates of correct

guesses are significantly better than chance (p-value< 0.001 and p-value = 0.03, respec-

tively), though by less than 5 percentage points. The results with and without learning are

not statistically different, both measured as the AUC (p-value = 0.13) and in terms of the

fraction of correct guesses (p-value = 0.61).

The ML model achieves an AUC of 0.71 and correctly classifies 65.6% of the contestants’

choices. We find a similar result using lasso (see Online Appendix C). The ML model is more

accurate than participants (p-value< 0.001 both with and without learning opportunities).8

Result 1: Participants predict significantly better than chance without learning, though

by a small margin (AUC = 0.54). Providing participants with feedback does not improve

predictions. Machine-learning models predict significantly better than chance and better

than participants.

Considering the distribution of participants’ performance, the ML model is more ac-

curate than 89% of participants who do not learn about the contestant’s decision after

submitting their prediction and more accurate than 94% of participants who do receive such

information.

The relationship between the predictions regarding steal risk and the actual steal rate

is shown in Figure 3. The relationship to the ML model is stronger than for participants’

predictions. This observation is confirmed by the marginal effects of regressions in which the

8Precision-recall analysis yields similar insights, which are most adequate when the number of observations
in each outcome is significantly unequal (e.g., many more steal than split choices). For participants, the area
under the precision-recall curve is 0.45, both with and without learning. For ML, the area under the
precision-recall curve is 0.62.
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actual steal decision of the contestant is the dependent variable, and the predicted steal like-

lihood is the independent variable. For participants, the relationship between the predicted

steal risk and the actual steal risk is weak (detailed regression results shown in Online Ap-

pendix D). In the No Learning treatment, a one-percentage-point increase in participants’

predicted steal risk is associated with a 0.11-percentage-point increase in the actual steal

rate. This relationship is positive and significant. The association between predictions and

actual steal rates is 0.05 in the Learning treatment, and it does not significantly improve

as the participant watches more videos (p-value > 0.10). By contrast, for the ML model, a

one-percentage-point increase in the predicted steal risk is associated with a 0.96-percentage-

point increase in the actual steal rate. The coefficient is not significantly different from 1

(p-value = 0.84).

Figure 3: Predicted Steal Risk and Actual Stealing, Using Participant and ML Predictions
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4.2 Experiment 1: Participants’ Beliefs about Accuracy

In Experiment 1, on average, participants overestimate their absolute accuracy in predicting

steal choice, though not by a large magnitude. Participants believe they correctly predicted

the behavior of 56.4% of contestants, which is significantly higher than their actual success

rate (p-value= 0.01), and their beliefs are uncorrelated with actual performance (Spear-

man correlation coefficient, ρ = 0.017, p-value = 0.72). Although participants believe they

perform significantly better than they do, the magnitude of bias is small relative to over-

confidence in detecting lies in Serra-Garcia and Gneezy (2021), where individuals correctly

detected lies in videos 52% to 53% of the time, but believed they were correct 64% to 67% of

the time. These results suggest the task of predicting who will steal may have been perceived

as difficult and that participants were aware that they were not able to accurately predict

behavior.

Participants show overplacement: less than 2.7% of participants place themselves in

the bottom quartile of the distribution of performance. By contrast, 53.3% believe their

performance is in the second quartile of the distribution, above median but not in the top

quartile, and 14.3% place themselves in the highest quartile. Whereas, by design, the average

quartile is 2.5 (because quartiles range from 1 to 4), the average quartile belief is significantly

lower at 2.21 (χ2 test, p-value< 0.001).

Result 2: Participants are overconfident about their ability to predict behavior, in absolute

and relative terms, though not by a large magnitude.

4.3 Correlates of participant and algorithmic predictions

The advantage of the ML model is that its predictions correlate with the correct cues for steal

choice, whereas participants’ beliefs do not. For example, consistent with the descriptive

statistics shown in Figure 2, age and the prize at stake are two important features that

the model consistently uses to make predictions about steal choice. In addition, several

emotions are used to predict the contestants’ decisions: sadness, disgust, happiness, and

anger. How often the contestant gazes left is another important facial cue for behavior

used by the algorithm. In addition, two features of their speech matter: sentiment score
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and whether the contestant makes an explicit, unconditional promise to choose split. Voice

intensity matters as well. We provide details on the relative influence of each covariate and

the relationship between features and predictions in Online Appendix D.9

4.4 Experiment 2: Flagging Predictions of the Algorithm

Since ML algorithms are more accurate than participants, they can be used to provide

algorithmic feedback to participants and potentially shape their beliefs. Participants may

be open to receiving predictions from the model. Yet, they may also believe that, since

videos are a rich source of information (and multidimensional), the human eye is able to

capture many subtle cues that are not easily coded into features upon which the algorithm is

trained. This potential difference between the perception of the human eye and the features

considered by the algorithm provides participants with ambiguity regarding the extent to

which they should rely on the algorithm rather than their own beliefs.

In Figure 4 we compare the average prediction of participants in each treatment, con-

ditional on whether the algorithm flagged the contestant in the video as having a very low

or a very high chance of choosing steal, or if there was no flag.

Without flags, participants believe the chance of steal choice is 37.4% for videos that

the ML algorithm flagged as “very low chance of stealing,” 43.7% for those flagged as “very

high,” and 42.7% for videos that were never flagged. The difference between videos flagged

as “very low” or “very high chance of stealing” is significant (p-value = 0.004).

Flags significantly change predictions. Participants in the Flag-Before treatment signif-

icantly reduce their predicted chance of steal choice to 26.7% when the video is flagged as

“low chance of stealing” and increase it to 64.7% when the video is flagged as “high chance

9We consider how emotions, speech, and other covariates are related to the likelihood of steal choice in
the ML model, using partial dependence plots (Hastie et al., 2008), shown in Online Appendix D. Partial-
dependence plots present the effect of a covariate xs on the likelihood of steal choice, accounting for the
average effects of all other covariates. Consistent with the raw data and the findings in van den Assem et al
(2012), the likelihood of steal increases with the prize at stake and decreases with the age of the contestant.
In addition, based on facial expressions and emotions, participants who gaze left more often are more likely
to choose steal. Also, more angry and more disgusted contestants are predicted to choose steal with a higher
chance, whereas more happy and more sad contestants are predicted to choose steal with a lower chance.
For words said, which can be more positive or more negative, saying more positive words is not associated
with a lower chance of choosing steal, but rather with a slightly higher one. Those contestants with a higher
voice intensity (volume) are more likely to steal.
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of stealing.” Participants in Flag-After also change their predictions, but by a smaller mag-

nitude. Their predicted chance of steal choice is 36.3% when the video is flagged as “low

chance of stealing” and it is 52.5% when the video is flagged as “high chance of stealing.”

Figure 4: The Effects of Flags on Beliefs
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Table 3 examines the effects of the treatments and the flags on beliefs and the accuracy

of predictions, including contestant fixed effects. Column (1) reveals that the introduction

of flags leads to a small increase in the belief of steal choice. In both Flag-Before and Flag-

After, the predicted chance that a contestant chooses steal increases by 3 percentage points.

Columns (2)-(3) show that significantly larger changes in beliefs occur for flagged videos,

especially in Flag-Before.

In Flag-Before, “very low” and “very high” flags change the predicted chance of steal

choice by 17 percentage points, relative to the average prediction for all videos. Relative to

the same flagged videos in Control, the difference in beliefs after observing a “very low” flag

in Flag-Before is 14 percentage points (− 0.17 for “very low” flag + 0.03 overall). “Very
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high” flags lead to an even larger difference of 20 percentage points relative to control (0.17

for “very high” flag + 0.03 overall). The difference in predictions between videos flagged as

“very low” and those flagged as “very high” chance of steal choice is 34 percentage points,

over 5 times larger than in the Control treatment.

Table 3: Effects of Flagging on Beliefs and Accuracy

(1) (2) (3) (4) (5) (6)
Predicted chance contestant steals Correct prediction

Treatment Effects
Flag-Before 0.035*** 0.036** 0.034** 0.048*** 0.028** 0.027**

(0.013) (0.014) (0.014) (0.010) (0.012) (0.012)
Flag-After 0.030** 0.032** 0.031** 0.010 0.003 0.003

(0.014) (0.014) (0.014) (0.011) (0.012) (0.012)

Treatment X Flag Effects
Flag-Before X Very low flag -0.170*** -0.170*** 0.061*** 0.061**

(0.014) (0.014) (0.024) (0.024)
Flag-Before X Very high flag 0.169*** 0.169*** 0.144*** 0.144***

(0.014) (0.014) (0.028) (0.028)
Flag-After X Very low flag -0.071*** -0.071*** 0.042 0.042

(0.014) (0.014) (0.028) (0.028)
Flag-After X Very high flag 0.051*** 0.051*** 0.030 0.030

(0.015) (0.015) (0.029) (0.029)

Constant 0.510*** 0.510*** 0.540*** 0.510*** 0.519*** 0.503***
(0.013) (0.013) (0.021) (0.022) (0.022) (0.026)

Demographic controls No No Yes No No Yes
Observations 11,940 11,940 11,940 11,940 11,940 11,940
R-squared 0.092 0.113 0.118 0.085 0.087 0.088

Notes: Coefficients and standard errors from linear regression models of participants’ beliefs and cor-
rectness of predictions (columns (1)-(3)), using the 50% threshold (columns (4)-(6)) in Experiment 2.
All specifications include video (contestant) fixed effects and an indicator for which group of flags the
participant was assigned to. Demographic controls include gender, age and familiarity with the TV
show. Robust standard errors clustered at the participant level are presented throughout. *, **, ***
indicate significance at the 10%, 5%, and 1% levels.

In Flag-After, a “very low” flag decreases the predicted chance of steal choice by 7

percentage points while a “very high” flag increases the predicted chance by 5 percentage

points. Relative to the same flagged videos in Control, the effect of a “very low” flag in

Flag-After is a small, 4 percentage points (− 0.07 for “very low” flag + 0.03 overall), but

statistically significant (p-value = 0.04). In Flag-After a “very high” flag has a stronger effect

of 8 percentage points relative to Control (p-value< 0.001). For both types of flags, the effects

of flags are significantly smaller in Flag-After compared to Flag-Before (p-value< 0.001 in

both cases). The resulting gap between videos flagged as “very low” and those flagged as
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“very high” chance of steal choice is 12 percentage points in Flag-After, which is larger than

in Control, but significantly smaller than in Flag-Before (F -test, p-value< 0.001).

Because flags affect beliefs and they are correct 75% of the time, the accuracy of beliefs

in Flag-Before increases significantly. Table 4 shows that in the Flag-Before treatment, the

fraction of correct guesses is 66.6% for videos flagged as low chance of steal choice and

60.9% for videos flagged as high chance, compared with 62.7% and 40.7%, respectively, in

the Control treatment. By contrast, in Flag-After, the fraction of correct guesses does not

change for videos flagged as low chance, and it increases by 6 percentage points, to 46.9%,

for videos flagged as high chance. The effects of flags for flagged videos result in a significant

increase in the AUC from 0.54 to 0.66 for Flag-Before (χ2 test, p-value< 0.001), but a smaller

and directional increase in the AUC to 0.58 for Flag-After (χ2 test, p-value = 0.14).

Table 4: Accuracy and Beliefs about Accuracy in Experiment 2

(1) (2) (3)
Treatment

Control Flag-Before Flag-After

Fraction correct guesses
Videos flagged as low chance 62.7% 66.6% 62.6%
Videos flagged as high chance 40.7% 60.9% 46.9%
Not-flagged videos 55.0% 58.1% 55.6%
Overall 54.4% 59.2% 55.4%

AUC
Flagged videos 0.54 0.66 0.58
Not-flagged videos 0.60 0.63 0.61
Overall 0.59 0.64 0.60

Beliefs
Absolute ability 58.9% 57.7% 60.6%
Relative ability 2.17 2.24 2.17
Accuracy of flags indicating low chance - 61.9% 62.3%
Accuracy of flags indicating high chance - 59.5% 57.1%

Notes: This table shows the fraction of correct guesses (50% threshold), AUC,
and participants’ beliefs about ability, by treatment.

Considering non-flagged videos, the accuracy of participants in Flag-Before was 3 per-

centage points higher, also for non-flagged videos. There are two potential reasons for this

difference. First, participants may learn from videos that are flagged, and this effect leads

to higher accuracy in videos that are not flagged. Second, by chance, participants in Flag-

Before could be more accurate. The data suggest that there is no spillover, but rather a
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small difference in accuracy between the groups. In additional analyses, reported in Online

Appendix D, we explore whether there is an increased accuracy in predictions for non-flagged

videos after flags are observed. We observe that, even before the first flagged video is shown

to participants, the accuracy of participants in Flag-Before is 3 percentage points higher.

There is also no evidence of increased accuracy with the number of flagged videos observed.

Columns (4)-(6) of Table 3 examine the effects of flags on the fraction of correct pre-

dictions. After controlling for baseline differences in accuracy, participants in Flag-Before

are 6 percentage points more accurate in their predictions when observing a “very low” flag

and 14 percentage points more accurate when observing a “very high” flag. This increase in

accuracy is consistent with the stronger impact of flags on predictions for “very high” flags,

compared to “very low” flags. There is no significant increase in accuracy in Flag-After,

neither in response to “very high” nor “very low” flags, though the effects are directionally

positive.

Result 3: Participants’ guesses are significantly affected by the ML flags, with significantly

stronger effects in Flag-Before than in Flag-After. These effects lead to a significant increase

in predictive accuracy in Flag-Before but not in Flag-After.

Participants’ beliefs about their own absolute ability to correctly predict contestant

behavior are lower in Flag-Before (57.7%) than in Flag-After (60.6%), leading them to be

directionally more confident about their absolute ability in Flag-After than in Flag-Before

(p-value= 0.05), without affecting their believed relative ability.

Participants’ beliefs about the accuracy of the ML algorithm do not vary significantly,

depending on the timing of the flags. In Flag-Before and Flag-After, participants believe the

algorithm to be correct 62% of the time when the flag is “very low.” When the flag is “very

high,” participants believe the algorithm is correct 59.5% in Flag-Before, and 57.1% in Flag-

After (t-test, p-value = 0.21). In both treatments, beliefs are below the actual accuracy of

the ML algorithm. Considering all videos for which the algorithm made extreme predictions

(out of sample), the algorithm is correct 77.5% of the time when the flag is “very low,” and

64.3% when the flag is “very high.”

Such patterns of beliefs are consistent with the stronger effects of flags in Flag-Before. In
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this treatment, participants believe that the algorithm is either directionally more accurate

(for “very high” flags, p-value = 0.30) or significantly more accurate (for “very low” flags,

p-value= 0.01) than they are. In Flag-After, by contrast, participants believe they are more

accurate than the algorithm when it is used to indicate a “very high” chance of steal choice

(p-value = 0.03), or only directionally worse by 1.7 percentage points, when it is used to

indicate a “very low” chance (p-value= 0.30).

Result 4: Participants are more confident in their ability to predict in Flag-After than in

Flag-Before. In Flag-Before, they believe that ML algorithms predict better than them by

a relatively small amount. In Flag-After, they believe that ML algorithms are either worse

than them or only slightly better. Overall, participants’ beliefs about the accuracy of ML

algorithms do not depend on the timing of flags, but timing affects their perceptions about

their own ability.

4.5 Understanding the Effects of Timing of Algorithmic Feedback

We conduct two additional analyses to better understand why the effect of algorithmic

feedback depends on its timing. First, we examine participants’ reports of how they made

predictions when the videos were flagged. Second, we examine the time spent watching the

videos across different conditions.

Using open-ended questions at the end of the experiment, we asked participants to

explain how they made their predictions. After providing their 20 guesses, their beliefs

about their own accuracy and the accuracy of the algorithm, they were asked how they

made predictions for all videos, and on the same screen, how they made predictions for

flagged videos. Two independent coders, blind to treatment assignment, classified their

answers into several categories (as detailed in Online Appendix D). The four most prevalent

categories were participants reporting to follow the algorithm (Trust ML), combine their own

belief with the algorithm (ML & own belief), only follow their own beliefs (Own belief), and

not trust the algorithm (Not trust ML). The agreement between coders was high (Cohen’s

κ = 0.82).

Participants report to react differently to flags shown before and after they watch the
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video (p-value< 0.001). Figure 5 shows the distribution of categories for the Flag-Before

and Flag-After treatment, based on the cases in which coders agreed. In Flag-Before, 31%

of participants report to trust ML, while 40% combine their own belief with ML. Hence,

71% report to follow the algorithm. By contrast, in Flag-After, 40% of participants report

to follow their own belief (despite the flag). They are less likely to trust ML (13%) or

to combine it with their own belief (22%). Automated text analyses, reported in Online

Appendix D, are consistent with these findings.

Figure 5: How Participants Report to Make Predictions with Flags
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Notes: Distribution of participants reports of how they made predictions when the video was
flagged, as coded by two independent raters. The sample includes 86% of the responses for which
the coders agreed on a category (N = 339 out of 393). “Trust ML” means that the participant
reported to follow the algorithm and to rely or trust it. “ML & own belief” includes participants
who report combining their own belief with the algorithm (and sometimes trusting the flags).
“Own belief” includes participant explanations that are only based on their own beliefs and not
the algorithm. “Not trust ML” includes participants who report not trusting the algorithm.

These findings are consistent with confirmation bias and the primacy effect, since par-

ticipants’ reports indicate that they rely on the information they receive first. Participants

report to rely on the flag more often when it is shown first (Flag-Before). They report to

rely on their own belief when the first piece of information is the video (Flag-After).
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Another reason why flags can affect individuals’ predictions differently if they are shown

first is that individuals may avoid the effort and time spent in forming a belief by going with

the flag (e.g., Dykstra et al., 2022). To explore this explanation, we use time spent on each

video. On average, participants spend 39.7 seconds watching each video, significantly more

time than the minimum of 20 seconds, which is also the typical duration of the contestants’

conversation. We do not find a difference in time spent depending on whether the flag was

shown before or after the video was watched (p-value = 0.24). Relatedly, time spent on a

video is uncorrelated with participants’ confidence in their accuracy (Spearman’s ρ = 0.03,

p-value= 0.58), which suggests that spending less time on a video does not explain lower

perceptions of ability. Hence, in the context of our experiment, avoidance of the task does

not seem to explain the differences in beliefs due to timing of flags.

5 Conclusion

Interest in the ability to detect deception has grown substantially with the emergence of

social media and spread the vast amounts of video content available online. An important

downside of this unfiltered communication is that it can be deceptive. In this paper we

test a potential mechanism to reduce mistakes in evaluating videos using machine learning

algorithms that can flag suspicious videos.

We study how the timing of algorithmic feedback can be designed to affect individual

updating and improve belief accuracy. Our main finding is that the effectiveness of algorith-

mic feedback depends on when the feedback is provided. Even when standard theoretical

frameworks would deem it irrelevant, the timing of feedback is important. After people form

their initial beliefs, they are less likely to update their beliefs using the ML feedback.

The effect of timing we find is consistent with confirmation bias. Individuals tend to

rely on their own signals and judgment (e.g., Conlon et al., 2022). We leverage findings from

the literature on confirmation bias and prior-based updating, which has shown that initial

signals can affect belief formation in some contexts, but not all (e.g., Eil and Rao, 2011,

Möbius et al., 2022) to apply them to a new context that is becoming increasingly important

for policy makers: how to leverage automation and algorithmic models to improve belief
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accuracy. Our findings show that adoption of algorithmic feedback can strongly depend on

its timing in the belief formation process.

Real-world applications of algorithmic advice in other contexts are suggestive of the

importance of timing. In the legal system, risk assessment algorithms are used by judges

as part of the decision-making process, assisting them in predicting recidivism. Judges

receive this risk assessment after conviction, when the risk assessment and sentence guidelines

worksheets are provided to them for sentencing, parole, and related decisions. Since by the

time judges receive the algorithmic advice they are already familiar with the case, this timing

might explain why the risk assessment tools have relatively small impact. For example,

Stevenson and Doleac (2022) find that judges changed sentencing practices in response to

the risk assessment, but that discretion played a large role in mediating its impact. As a

result, risk assessment algorithms did not bring any detectable benefit in terms of public

safety or reduced incarceration (see also Kleinberg et al., 2018).

In health care, algorithms are used, for example, in assisting radiologists in a clinical

reading workflow environment. Since algorithms are employed prior to the radiologists’

evaluation of the case, they may have a relatively large impact. Wismüller and Stockmaster

(2020) measured the impact of algorithmic flags for head CT scans on Turn-Around Time

(TAT). Reducing TAT is important because delayed interventions may be detrimental for pa-

tient outcomes. They found that their early flagging procedure reduced TATs substantially,

showing that algorithms have a substantial impact on radiologists’ decision-making.

The literature shows that information design can influence perception (Kamenica, 2019;

Brooks, Frankel and Kamenica, 2023). Our paper suggests that an important decision in the

design and implementation of algorithmic feedback in a variety of applications is its timing. If

decision-makers choose to introduce algorithmic advice early in the decision-making process,

this feedback will likely have stronger effects on decisions than when it is used late in the

decision-making process. Such decisions could affect how the human-machine interaction

evolves over time, and individuals’ overall trust on algorithms.
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A Data Sources

Appendix A provides details on the sources of the Golden Balls episodes (Section A.1) and

the experimental instructions (Section A.2).

A.1 Golden Balls

The episodes from Golden Balls were shared with us by Donja Darai for research purposes.

She had previously used this TV show to study attractiveness and cooperation (Darai and

Gratz, 2013). The DVDs we obtained included all episodes from Season 1 (40 episodes) and

Season 2 (60 episodes). We obtained 78 episodes out of 80 in Season 3 and 42 out of 65 aired

in Season 4. We focus on all episodes we received, but exclude three episodes in which the

prize to be split was less than 4 GBP (1.10 and 4.24), and in which one contestant claimed

an intention to steal but split after the show (1.09), as done in Turmunkh et al. (2019). For

4 contestants, emotions could not be detected by the facial analysis software and are thus

excluded (Participant IDs 98, 147, 305, 412). This implies that we analyze the behavior of

76 contestants in Season 1 (since 2 episodes are excluded), for 118 contestants in Season 2

(since the emotions of 2 contestants could not be detected), for 155 contestants in Season 3

(since the emotions of 1 contestant could not be detected), and for 81 contestants in Season 4

(since the emotions of 1 contestant could not be detected). The total number of contestants

is 430.

A.2 Instructions

Below are the instructions presented to participants on Prolific Academic and in the labora-

tory at UCSD, via Qualtrics surveys. The instructions are shown for the no learning treat-

ment in Experiment 1, with differences with the learning treatment indicated in brackets. The

additions, including flagging, for Experiment 2 are also shown in brackets. Participants were

asked to guess the chance that the contestant would split or steal (which one was randomized

across participants). The instructions are shown for participants guessing ‘steal.’

The experiment always began with a CAPTCHA verification question and with an audio

transcription question to verify that participants could listen to audio.

Instructions

• In this study, you will see 20 videos.

• In each video, you will see 1 contestant in a TV show.

• Each contestant made a SPLIT or STEAL decision.
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• You will watch the conversation between the two contestants before they made their

SPLIT or STEAL decision.

page break

How does the split or steal decision work?

After 3 rounds of play in the TV show, in the final round:

• Each of the 2 remaining contestants is presented with 2 golden balls, one with the word

“split” and the other with the word “steal” written inside.

• The 2 contestants simultaneously have to choose either the split or the steal ball.

Consequences for the split or steal decision:

• If both decide to split, they split the jackpot equally.

• If one decides to split while the other decides to steal, the one who steals receives the

entire jackpot and the one who splits goes home with nothing.

• If both decide to steal, both go home with nothing.

In what follows you will watch a brief example video, in which the TV show host explains the

rules, and you will be asked to answer several questions. Please listen to the rules carefully.

page break

The SPLIT or STEAL decision

Below is an example episode in which the host of the TV show explains the rules. The

jackpot amount varies in each episode.

[VIDEO OF PRESENTER EXPLAINING RULES]

Please answer the following questions carefully. There is only 1 correct answer in each

question.

IF YOU FAIL TO ANSWER THE 3 QUESTIONS BELOW CORRECTLY, YOUR SUB-

MISSION WILL NOT BE APPROVED.

1. What happens if both contestants choose to SPLIT?

• They both go home with nothing
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• They both share the jackpot equally

• They both share a chance to participate in a future episode of the show

2. What happens if both contestants choose to STEAL?

• They both go home with nothing

• They both share the jackpot equally

• They both share a chance to participate in a future episode of the show

3. What happens if one contestant STEALS and the other SPLITS?

• The one who STEALS goes home with nothing, the one who SPLITS gets the whole

jackpot

• The one who STEALS gets disqualified, the one who SPLITS gets nothing

• The one who STEALS gets the whole jackpot, the one who SPLITs gets nothing

page break

Guessing task

You will watch 20 videos of the conversation before the split or steal decision.

After watching each video please carefully consider whether you think that the contestant

you saw on the video chose Split or Steal.

We will ask you to guess how likely it is that the contestant chose to steal. You will provide

your guess as a chance, on a scale from 0 to 100.

Below you see an example. Please move the slider from 0 to 100 to see how it works.

How likely do you think it is that the contestant on the left/right of the screen chose to

steal?

[SLIDER (0 to 100)]
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page break

Your bonus will depend on your guess. Specifically, your bonus will be calculated as follows:

The computer will randomly select a number R from 1 to 100.

• If the number the computer randomly selected is less than or equal to the number you

selected, you will receive the $5 bonus if the contestant indeed chose to steal, and zero

otherwise.

• However, if the number the computer randomly selected is greater than the number

you selected, you will participate in a lottery. In this lottery, you will receive the $5

bonus with a chance exactly equal to the number drawn by the computer.

For example, suppose that you guess that a contestant chose to steal with 60% chance.

• If the number the computer chooses randomly is below 60, then you receive the bonus

if the contestant indeed chose to steal, and zero otherwise.

• If the number the computer chooses randomly is above 60, then you receive the bonus

with chance R%, and zero otherwise.

To maximize your chance of earning a bonus payment, you should honestly

choose your guess that the contestant chose to steal.

Understanding Questions

1. What is your guessing task? After watching each video...

• ...I will guess how likely it is that the contestant chose to steal

• ...I will guess how likely it is that the contestant chose to split

• ...I will guess how likely it is that the number R is above 100

2. My bonus will determined by...

• ...a random number R, from 1 to 100. Hence the best I can do is guess randomly after

each video.

• ...a random number R, from 1 to 100, and my guess about the chance that the contes-

tant chose to steal. Hence, the best I can do is honestly guess how likely I think it is

that the contestant chose to steal.
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• ...a random number R, from 1 to 100, and my guess about the chance that the contes-

tant chose to steal. Hence, the best I can do is provide a random number between 0

and 100, to answer how likely I think it is that the contestant chose to steal.

page break

One of your guesses for one video will be randomly selected for payment, and your bonus

will be determined by the decision you made. Since any choice you make may be selected,

please make your decisions carefully.

page break

[ Experiment 2 :

Additional Information For Your Guessing Task

We have used contestants’ facial expressions and speech in the videos to train a standard

machine-learning algorithm to predict when a contestant will choose split or steal.

We used this algorithm to “flag” four videos for which the algorithm either predicted that the

contestant chose to split with very high chance or very low. [Flag-Before: This flagging will

be shown as a message that informs you that the algorithm made such a prediction before

you watch the video and provide your guess.] [Flag-After: This flagging will be shown as

a message that informs you that the algorithm made such a prediction after you watch the

video and think about your guess. After seeing the flag, you can submit your guess.]

Understanding Question

Which of the following is true?

• I will be provided with predictions from an algorithm trained to predict with which

likelihood the contestant will [split/steal] for all videos.

• I will be informed if the video is “flagged” if the algorithm predicted that the contestant

chose to split with a very high or a very low chance, for some videos.

• For every video, I will be informed if the video is “flagged” if the algorithm predicted

that the contestant chose to split with a very high or a very low chance. ]

page break

You are now going to watch the 20 videos. [Experiment 1 – Learning Treatment: Each time,

after providing your guess, you will learn whether the contestant chose to split or to steal.]

page break
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[For each of 20 randomly selected contestant videos:]

[Flag-Before: If video was flagged:

For this upcoming video: “The algorithm predicted that the contestant on the [right/left] of

the screen will [split/steal] with a [very high/very low] chance.”]

page break

[GOLDEN BALLS CONTESTANT VIDEO]

[Flag-After:

page break

If video was flagged:

“The algorithm predicted that the contestant on the [right/left] of the screen will [split/steal]

with a [very high/very low] chance.”

]

How likely do you think it is that the contestant on the left/right of the screen chose to

steal?

[SLIDER (0 to 100)]

page break

[Experiment 1 – Learning Treatment: The contestant in the previous video chose to [split/steal].]

page break

After rating all 20 videos:

You have now seen all 20 videos.

We will now ask you some more questions about the videos. You can earn an additional

bonus if you answer correctly.

In these questions, we will ask you about how well you think you did when guessing whether

a contestant choose to steal or split, in the 20 videos.

When we ask you about whether your guess is correct or not, it means the following. If you

guessed that the contestant chose to steal with more than a 50% chance, and the contestant
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chose to steak, your answer is correct. Similarly, if you guessed that the contestant chose

toÂ steal with less than a 50% chance, and the contestant chose to split, your answer is

correct.

page break

[Experiment 1 – No Learning Treatment only and Experiment 2:

How many of the 20 guesses (for 20 videos) you just made do you believe are

correct? If the number you choose is correct, you will earn an additional BONUS of $1.

[SLIDER (0 to 20)]]

page break

Compared with previous participants in this experiment, how well do you think

you could guess whether a participant chose to steal or split? We ask you to choose

a quartile. If you choose the correct one, you will earn an additional bonus of $1.

• Quartile 4: 75th-100th percentile (better than at least 75% of participants).

• Quartile 3: 50th-75th percentile

• Quartile 2: 25th-50th percentile

• Quartile 1: 0th-25th percentile (worse than at least 75% of participants)

page break

[ Experiment 2 Flag-Before and Flag-After treatments:

In this question we ask you to guess how accurate the algorithm is. Consider 10 videos

flagged by the algorithm, which predicted that in these videos contestants will split/steal

with a very high chance.

How accurate do you guess the algorithm will be? That is, how many of the 10 contestants

in the video will actually choose to split/steal? If the number you choose is correct, you will

earn an additional BONUS of $1.

[SLIDER (0 to 10)]

page break

In this question we ask you to guess how accurate the algorithm is. Consider 10 videos

flagged by the algorithm, which predicted that in these videos contestants will split/steal

with a very low chance.
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How accurate do you guess the algorithm will be? That is, how many of the 10 contestants

in the video will actually choose to steal/split? If the number you choose is correct, you will

earn an additional BONUS of $1.

[SLIDER (0 to 10)]]

page break

Very short questionnaire

1. What is your gender?

• Male

• Female

2. What is your age?

3. Were you familiar with the TV show before this study?

• Yes, I had seen (parts of) its episodes in the past

• No, I had never seen this show before

4. [ Experiment 1: Please describe in 1-2 sentences how you made your decisions. ]

4. [ Experiment 2 - Control: Please describe in 1-2 sentences how you made your guesses. ]

5. [ Experiment 2 - Flag-Before and Flag-After: Please describe in 1-2 sentences how you

made your guesses when you saw a flag for the video. ]
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B Facial, Audio and Speech Analysis

B.1 Facial Analysis: FaceReader

To perform the analysis of emotions and facial expressions we use in FaceReader. We first

started by converting all DVDs and cutting the final conversation prior to the split or steal

decision (last round of play in each episode) for analysis. We refer to this cut as the video

or conversation video.

Next, each video was edited to remove all shots that did not only display the contestant of

interest. The removed shots included shots of the audience, shots of multiple faces including

the host, as shown in Figure B1. The reason these shots were removed is that they are

not easily separated by FaceReader from the contestant’s shots, and our aim was to analyze

contestant facial expressions as cleanly as possible.

(a) Audience (b) Multiple faces (c) Host

Figure B.1: Shots removed for individual analysis of contestants

FaceReader analyzes 10 frames per second of video. It allows several options for the anal-

ysis of facial expressions. We followed the recommendations given by the software provider.

We used every other frame as the sample rate, which speeds up analysis without an effect

on output. We also used a continuous calibration for facial expressions, which attempts

to correct for individual-specific biases in facial expressions, and smoothed classifications of

emotions, which considers time between frames when calculating emotions. We gave age

and gender information to FaceReader to maximize precision of the analysis. Figure 1 in the

body of the paper shows an example of the software analyzing a contestant in the TV show.

Facereader is best able to analyze facial expressions on straight ahead faces with proper

lighting. The software is known to not be very good at reading non-Caucasian faces, chil-

dren’s faces, or faces over the age of 65. A large majority of the Golden Balls contestants are

Caucasian and between the ages of 18-65. The same Facereader model, the General model,

was used for all contestants.

The videos from Golden Balls fall outside the optimal (lab) settings in which FaceReader

can be run. Hence, for several contestants there are missing frames that could not be analyzed

by the software, and in some cases no frames at all. On average, 56.5% of the frames for

each contestant could be read and their emotions analyzed by FaceReader.

FaceReader measures the six basic or universal expressions as classified by Ekman (1970).
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Each emotion is assigned a value between 0 and 1 in each frame of the video analyzed. In

addition to measuring the six basic emotions, Facereader also provides a measure of valence.

Valence indicates whether the emotional status of the contestant is positive or negative.

’Happy’ is the only positive emotion. ’Sad’, ’Angry’, ’Scared’ and ’Disgusted’ are considered

to be negative emotions. ’Surprised’ can be either positive or negative. The valence is

calculated as the intensity of ’Happy’ minus the intensity of the negative emotion with the

highest intensity. For instance, if the intensity of ’Happy’ is 0.8 and the intensities of ’Sad’,

’Angry’, ’Scared’ and ’Disgusted’ are 0.1; 0.0; 0.05 and 0.05, respectively, then the valence

is 0.7.

FaceReader also measures head, mouth, eye, gaze, and eyebrow movements. Specifically,

FaceReader calculates the x-, y-, and z-head orientation (in degrees) of the individual in

each frame. It measures whether the mouth is open or closed, or whether its position is

unknown. We define indicator variables for whether the mouth is open, closed, or its position

is unknown. FaceReader similarly measures whether both eyes are opened, closed, in different

position or the position of at least one is unknown. FaceReader measures whether the eyes

gaze left, right, forward or gaze is unknown, and the contestant’s eyebrow movements, where

we define indicator variables that take value one if both eyebrows are raised, lowered, neutral,

in different positions or unknown. The software also provides a measure of quality (of the

image) for each frame, which is between 0 and 1.

The sample for analysis focuses on 430 contestants, for whom FaceReader analyses of

emotional states could be conducted for at least one frame. In the main analyses, all measures

for a given contestant are averaged throughout the clip.

B.2 Speech Analysis

We use transcripts from the words that each contestant said during their conversation prior

to the split or steal decision.

We focus on two basic features of speech, word count and sentiment score, provided by

a widely used package in R (sentimentr). Word count is the number of words that the

contestant says. Sentiment scores are calculated in sentimentr package in R (Rinker, 2018).

This package differs from standard methods based on dictionary lookups (Bing, NRC and

Afinn methods) in that it takes into account valence shifters (including negators such as

’not’) and de-amplifiers (words such as ’hardly’). Additionally, we use the classification of

promises by Turmunkh et al. (2019), into explicit or implicit and conditional or unconditional

promises.
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B.3 Voice Analysis

We examine the role of voice features, and their predictive power for split and steal decisions.

We briefly explain the measures we considered in what follows.

Excellent introductions to sound analysis are provided in a variety of sources. We borrow

heavily from Zhang (2019, Chapter 6) here to provide an overview of the voice analysis we

conduct. Humans have vocal cords that vibrate when air from our lungs passes through

them. This vibration produces vocal sounds. A sound wave is a transfer of energy as it

travels away from a vibrating source. Waves are characterized by their amplitude, their

length and frequency. Frequency is measured in Hertz (HZ) where 1 Hertz is 1 vibration per

second.

A wavelength is the length of one cycle of sound and the inverse of the frequency. Longer

wavelengths have a lower pitch. Amplitude specifies the sound’s loudness. A low amplitude

will produce a soft sound and a higher amplitude will produce a louder sound. Pitch and

loudness are different from each other. The pitch of a sound depends on the frequency,

while the loudness of a sound depends on the amplitude of sound waves. Pitch and intensity

(loudness) are illustrated in Figure B.2.

Figure B.2: Sound waves: pitch and intensity (Zhang, 2019)

We analyze the voice of contestants in Golden Balls using Praat (Boersma and Weenink,

2020; see also, the soundgen package in R by Anikin, 2020). We take the entire conversation

between two contestants and sequentially mute the opponent, to analyze each contestant

separately. The basis of sound analysis is the short-time Fourier transform (STFT) and the

software analyzes one short segment of sound at a time (one STFT frame). STFT is based on

Discrete Fourier Transformations (DFT), which decompose a time series into a sum of finite

series of sine or cosine functions, which have a specified frequency and a relative amplitude.

In this way, a DFT allows us to switch from the time domain to the frequency domain (a

detailed introduction is provided by Sueur, 2020). An STFT computes a DFT on each slide

or jump of the sound (signal).

We focus on two key and intuitive descriptive measures of the sound of the contestant’s

voice: pitch and loudness using intensity. The intensity of a wave is the power per unit area

carried by the wave. The intensity of a sound is proportional to its amplitude squared and
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it is measured in decibels. A more intense sound has larger amplitude oscillations, and it is

an approximate measure of the loudness of a contestant’s voice. Pitch is salient to listeners

but difficult to measure accurately (Anikin, 2020). Pitch is the fundamental frequency of

each sound wave. The software calculates pitch based on the autocorrelation method. We

measure the mean value of pitch (in Hz) over all the frames in which the contestant speaks.

Hence, our measures of voice characteristics provide basic descriptive measures of how a

contestant’s voice sounded in their conversation.
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C Machine-learning Methods

C.1 Developing Prediction Functions

We are interested in predicting Y , an indicator for the contestant’s decision to steal. The

input variables, X, consist of individual characteristics or features of the contestant, during

her conversation (detailed below).

We estimate GBMs to predict the likelihood of stealing. Given that stealing is a binary

variable, we use the Bernoulli distribution and set as an objective to minimize binomial

deviance (or cross-entropy) loss function:

L(y, f(x)) = log[1 + exp−2yf(x)]

where y ∈ {−1, 1} (Hastie et al., 2008 Chapter 10, page 346). This approach estimates

boosted regression trees, which divide the predictor space into distinct non-overlapping re-

gions. The boosting approach learns “slowly.” It starts with simply fitting the training

data, with all observations in the training set receiving equal weight. However, with each

successive iteration, the observation weights are modified, and those observations that were

misclassified receive a higher weight. We use the standard package “gbm” in R (Ridgeway,

2020) and tune the model hyperparameters,1 controlling for the learning rate, the interac-

tion depth in the tree, and the fraction of observations used in each iteration, using fivefold

cross-validation.

We also analyze which features the GBM uses to predict stealing. To predict, GBMs split

the data according to different covariates. Once the algorithm calculates the best predictive

tree ensemble, we can calculate the increase in accuracy achieved by splitting on each feature.

This metric is referred to as the “relative influence” and provides a measure of the reduction

in error risk that is achieved by including it in the splits of the tree (Hastie et al., 2008). A

higher value of influence for a covariate means it is more important in generating a prediction

by the predictive model. We explore this measure to contrast the cues correlated with GMB

predictions and those correlated with participant beliefs in our experiments.

C.2 Estimation Details and Settings for GBM

Gradient boosting combines both classification and regression techniques (Kuhn and John-

son, 2013). Broadly speaking, given a loss function (binary deviance in our case) and a weak

learner (regression trees), the algorithm looks for an additive model that minimizes the loss

function.

The basis of gradient boosted trees are classification trees which partition the space into

non-overlapping regions Rj, where j = {1, 2, ..., J}, representing the terminal nodes of the

1A useful practical guide is provided here.
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tree (Hastie et al., 2008). For each region, a constant γj is defined such that the predictive

model assigns an observation in that region j the value γj: x ∈ Rj ⇒ f(x) = γj. A tree is

written as:

T (x,Θ) =
J∑
j=1

γjI(x ∈ Rj),

with parameters Θ = {Rj, γj}J1 , where J is a tuning parameter controlling the number of

regions or splits in each tree. A boosted tree model is a sum of M trees,

fM(x) =
M∑
m=1

T (x; Θm)

induced in a forward stagewise manner, which approximates a solution to the optimization

problem sequentially by following the steps outlined in Hastie et al. (2008, Algorithm 10.3).

The steps of the algorithm are the following:

1. Initialized f0(x) = arg minγ
∑N

i=1 L(yi, γ)

2. For m = 1 to M :

a) For i = {1, 2, ..., N} compute

rim = −

[
∂L(yi, f(xi))

∂f(xi)

]
f=fm−1

.

b) Fit a regression tree to the targets rim given terminal regions Rjm, with j =

{1, 2, ..., Jm}.
• For j = {1, 2, ..., Jm} compute

γjm = arg minγ
∑

xi∈Rjm

L(yi, fm−1(xi) + γ).

c) Update fm(x) = fm−1(x) + ν ·
∑Jm

j=1 γjmI(x ∈ Rjm).

3. The output is f̂(x) = fM(x).

The first step states that the algorithm starts with a single terminal node tree, finding the

optimal constant model. In each iteration m, for each observation, the negative gradient is

computed (step 2a) and referred to as pseudo residuals (r). Then, in each iteration, a new

regression tree is fit to add to the current existing trees. The contribution of each tree is

given a factor 0 < ν < 1, referred to as shrinkage, when it is added to the current set of

trees.
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The interaction level of the regression trees is limited by the tree size J . In tuning the

boosted tree parameters, we consider two levels J = 1, an additive model, and J = 2 a

model in which two-variable interaction effects are also allowed. We also set the minimum

number of observations in each terminal node, such that the resulting regions are based on

enough observations. We explore a minimum of 5, 10, 20 or 25 observations in each terminal

node. We explore different values of the shrinkage parameter (or learning rate): 0.1, 0.2, 0.3

and 0.4. Since the number of observations in the training data is limited and we want to

avoid overfitting, we also introduce subsampling. This implies that in each iteration only a

fraction η of the training observations is used to grow the next tree. We explore values of

0.5, 0.6 and 0.7 for the subsampling parameter.

To reduce the risk of overfitting, we include in the model the following covariates regard-

ing the contestant. First, two contestant characteristics: age and gender. Second, several

measures of her facial expressions: the contestant’s emotions, as measured by the average

value of six emotions (excluding neutral), and gaze movements (how often the contestant

gazes left, right, forward and how often gaze is unknown). Since quality may also matter, we

also included three measures of recordings (quality measured by FaceReader between 0 and

1, the number of frames in the recording, and the share of analyzed frames). Third, several

measures of speech: whether the jackpot was mentioned and, if so, the jackpot amount,

whether the contestant makes a conditional or unconditional, implicit or explicit promise to

split, her word count and sentiment score. Fourth, two simple measures of the contestant’s

voice during her conversation with the other contestant: pitch and intensity of her voice.

We train 100 trees (M = 100), use 5-fold cross-validation on the training sample, to

determine the optimal interaction level of the model (J = 2), the minimum number of

observations in each node (10), the learning rate (ν = 0.2), and the subsampling parameter

(η = 0.7).

C.3 Estimation Approach for Rigorous Logistic Lasso

We also estimate regularized logistic regression models with rigorous penalization (see Belloni

et al, 2016; Ahrens et al., 2020) to predict the likelihood of stealing. Penalized regression

methods fit models with all p predictors using a technique that regularizes the coefficient

estimates, shrinking them towards zero (Tibshirani, 1996). Denote by yi the decision to

steal, which takes value 1 if the contestant steals and 0 if she splits. The vector of predictors

is xi, and the vector of parameters is β. Given N contestants, the logistic lasso has as an

objective to maximize the penalized log-likelihood:

1

N

N∑
i=1

yi(β0 + x′iβ)− log(1 + e(β0+x′iβ))− λ

N
||β||1
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where λ is a tuning parameter and ||β||1 is the `(1) vector norm.

With rigorous penalization, the value of λ is theory driven (Belloni et al, 2016) with

λ = c
2

√
NΦ−1(1 − γ), where c is a slack parameter, Φ is the standard normal CDF and

γ is the significance level. Following Belloni et al. (2016), we set c = 1 and γ = 0.1
p log(N)

.

Alternatively, the value of λ may be selected via cross-validation. We obtain qualitatively

similar results using 5-fold cross-validation as an alternative approach.

C.4 Results for Rigorous Logistic Lasso

We estimate two types of models: a “lasso simple” model and a “lasso long” model. The

difference between them is that the lasso simple model only includes the average value of the

emotions of the contestant during her conversation prior to the split or steal decision, while

the lasso long model also includes the standard deviation, the minimum and the maximum

of the contestant’s emotions during the conversation. Minor variations in the covariates

included do not significantly affect predictive accuracy.

Table C.1: Rigorous Logistic Lasso - Coefficient Estimates

(1) (2)
Likelihood of stealing

Selected covariates lasso simple lasso long

Age -0.015 -0.015
Happy -0.271 -0.151
Max of angry 0.612
Max of disgusted 0.702
Gaze left 0.847 0.858
Implicit unconditional promise -0.039 -0.041
Explicit unconditional promise -0.356 -0.375

Constant 0.554 0.371

The AUC of the lasso simple model is 0.70 (95% CI is 0.60,0.79). The fraction of correct

predictions, using 50% as the threshold, is 66.41%. The correlation between the model’s pre-

dictions and actual stealing is significant, though the coefficient is 1.86, which is significantly

higher than 1 (p-value= 0.003). Hence, a change in the predicted steal rate of 1 percentage

point is associated with more than 1 percentage point increase in the likelihood of stealing.

This suggests that the model’s predictions may not be sensitive enough to capture the mag-

nitudes of changes in steal risk. Similarly, the AUC of the lasso long model is 0.70 (95% CI

is 0.60,0.80). The fraction of correct predictions, using 50% as the threshold, is 68.75%. The

correlation between the model’s predictions and actual stealing is again significant, though

as in the lasso simple model the coefficient is 1.896, which is significantly higher than 1

(p-value= 0.002). The selected coefficients with each model are shown in Table C.1.
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C.5 Comparison to logit regression

We also examine the accuracy of logit regression models in predicting out of sample. We

run a “simple” logit regression, without a penalty term, on the training sample. Then we

predict on the test sample, and examine the accuracy of predictions. The simple logit model

yields an AUC of 0.69 (95% CI is 0.59, 0.78). The fraction of correct predictions, using

50% as the threshold, is 65.63%. We also estimate a “long” logit regression, including the

standard deviation, the minimum and the maximum of the contestant’s emotions during

the conversation. The long logit model yields an AUC of 0.67 (95% CI is 0.57, 0.77). The

fraction of correct predictions, using 50% as the threshold, is 65.63%.
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D Additional Results

In this section, we present additional analyses to complement those presented in the body

of the paper.

D.1 Descriptive Statistics

Figure D.1 below shows summary statistics for contestants in the entire dataset, comparing

those who split and those who steal. All continuous variables are standardized.

Figure D.1: Contestant characteristics and behavior by decision (split or steal)

Notes: This figure shows the average value of each covariate in standard deviations (for continuous variables, standardized for
all videos) and in rates (for variables that range 0 to 1) by the contestant’s decision to split or steal. All videos of contestants
are included (N=430).
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Table D.1: Descriptive Statistics of Contestants, by Steal Decision

Split Steal t-test

(N = 232) (N = 198) p-value

Contestant characteristics

Female 0.56 0.515 0.35

Age 37.948 34.171 0.001

Nonverbal features

Emotions

Happy 0.201 0.176 0.081

Sad 0.099 0.102 0.722

Angry 0.045 0.051 0.141

Surprised 0.159 0.141 0.130

Scared 0.079 0.074 0.389

Disgusted 0.026 0.029 0.336

Arousal 0.524 0.521 0.844

Facial movements

Mouth open 0.273 0.284 0.614

Mouth closed 0.2 0.236 0.112

Mouth unknown 0.528 0.48 0.102

Both eyes open 0.3 0.315 0.553

Both eyes closed 0.078 0.089 0.402

Eyes different 0.103 0.124 0.106

Eyes unknown 0.518 0.472 0.115

Gaze forward 0.106 0.102 0.718

Gaze left 0.07 0.125 0.001

Gaze right 0.141 0.124 0.368

Gaze unknown 0.683 0.649 0.145

Both eyebrows raised 0.014 0.008 0.109

Both eyebrows lowered 0.056 0.063 0.573

Both eyebrows neutral 0.275 0.289 0.606

Eyebrows different 0.136 0.168 0.051

Eyebrows unknown 0.519 0.472 0.112

Video features

Quality 0.789 0.812 0.018

Nonmissing frames 0.54 0.591 0.074

Total frames 198.991 208.692 0.333

Speech features

Jackpot (in GBP) 12246.913 14848.652 0.166

Explicit unconditional promises 0.586 0.298 0.000

Explicit conditional promises 0.065 0.091 0.388

Implicit unconditional promises 0.935 0.722 0.028

Implicit conditional promises 0.401 0.409 0.894

Sentiment score 0.074 0.101 0.083

Word count 55.81 57.379 0.635

Voice features

Pitch 210.235 214.343 0.335

Intensity 39.981 38.865 0.469

Observations 430

Notes: This table presents the mean of each contestant characteristic or feature, separated
by split and steal decision. The p-value of a t-test comparing those who steal and those
who split, based on a linear regression of the decision on the characteristic or feature, is
presented in the last column.
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Table D.2: Descriptive Statistics of Contestants, by Training vs. Test Set

Training Set Test Set t-test

(N = 302) (N = 128) p-value

Steal 0.474 0.430 0.404

Contestant characteristics 0.526 0.570 0.404

Female 36.567 35.363 0.332

Age 0.940 0.953 0.583

Nonverbal features

Emotions

Happy 0.190 0.189 0.945

Sad 0.099 0.106 0.420

Angry 0.049 0.045 0.349

Surprised 0.149 0.156 0.613

Scared 0.076 0.078 0.819

Disgusted 0.028 0.025 0.179

Arousal 0.521 0.526 0.766

Facial movements

Mouth open 0.275 0.285 0.686

Mouth closed 0.225 0.197 0.249

Mouth unknown 0.501 0.518 0.585

Both eyes open 0.314 0.289 0.361

Both eyes closed 0.078 0.096 0.258

Eyes different 0.115 0.107 0.538

Eyes unknown 0.492 0.508 0.610

Gaze forward 0.110 0.091 0.099

Gaze left 0.092 0.103 0.534

Gaze right 0.135 0.129 0.775

Gaze unknown 0.663 0.678 0.558

Both eyebrows raised 0.012 0.010 0.737

Both eyebrows lowered 0.060 0.057 0.813

Both eyebrows neutral 0.287 0.269 0.532

Eyebrows different 0.149 0.156 0.690

Eyebrows unknown 0.492 0.508 0.617

Video features

Quality 0.799 0.802 0.771

Nonmissing frames 0.571 0.546 0.429

Total frames 203.063 204.391 0.908

Speech features

Jackpot (in GBP) 13278.648 13837.229 0.789

Explicit unconditional promises 0.430 0.508 0.284

Explicit conditional promises 0.076 0.078 0.955

Implicit unconditional promises 0.831 0.852 0.848

Implicit conditional promises 0.424 0.359 0.308

Sentiment score 0.090 0.079 0.515

Word count 56.619 56.328 0.935

Voice features

Pitch 209.880 217.426 0.103

Intensity 39.169 40.170 0.556

Notes: This table presents the mean of each contestant characteristic or feature, separated
by whether the contestant was assigned to the training or test set. The p-value of a t-test
comparing those who are in the test and training set, based on a linear regression of the
decision on the characteristic or feature, is presented in the last column.

22



D.2 Experiment 1: Additional Results

Figure D.2 shows the distribution of participant beliefs in Experiment 1, in the No Learning

(Panel A) and Learning (Panel B) treatments.

Figure D.2: Distribution of participant beliefs in Experiment 1

Table D.3: Average Accuracy of Participants and ML Models

AUC Fraction correct

No Learning 0.536 0.541
Learning 0.518 0.518
ML Model (GBM) 0.713 0.656

Differences (p-value)
Effect of Learning 0.126 0.613
No Learning vs. GBM 0.000 0.000
Learning vs. GBM 0.000 0.000

Notes: AUC and the fraction of correct guesses (using 50% threshold) are shown for each

treatment and the ML model. Under “Differences (p-value)” p-values of tests of the difference

between these measures are shown. When comparing the AUC, we test the equality of the

AUC using the test proposed by DeLong et al. (1988) and report the p-value of their proposed

χ2-test. When comparing the fraction of correct guesses and predicted steal rate, we use linear

regressions that include contestant fixed effects, with robust standard errors clustered at the

participant level (for participants).

23



Table D.4: Predicted and Actual Steal Risk

(1) (2) (3)
Likelihood that contestant steals

Participant prediction
No Learning Learning ML model

Predicted likelihood that contestant steals 0.109*** 0.053* 0.964***
(0.018) (0.028) (0.180)

Observations 9,120 3,180 128
Number of clusters 456 159 -

Notes: This table shows marginal effects of probit regressions on the likelihood that a contestant

steals. Columns (1)–(2) show the relationship between participants’ predicted likelihood of

stealing and actual stealing for the participants in the no-learning and learning treatments,

respectively. Column (3) shows the relationship between the predicted likelihood of stealing by

the ML model and actual stealing. Robust standard errors, clustered at the participant level

in columns (1)–(2), shown in parentheses. *, **, and *** indicate significance at the 10%, 5%,

and 1% levels.

Figure D.3: Distribution of accuracy, relative to chance
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D.3 Experiment 2: Additional Results

Figure D.4 shows the average correct predictions of participants in Flag-Before and Flag-

After, focusing on videos that were flagged, by order of the flag, and videos that were not

flagged, by their order relative to the number of flags shown.

Figure D.4: Accuracy following flags in Flag-Before and Flag-After

Not-flagged videos

Flagged videos
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After 2 flags
After 1 flag
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2nd flag
1st flag
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Fraction of correct

predictions
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Notes: This figure shows the average accuracy of participants’ predictions for flagged and not-flagged
videos, by their order. For flagged videos, the figure shows the fraction of correct predictions after the
1st, 2nd, 3rd and 4th flags, for Flag-Before and Flag-After. For not-flagged videos, the figure shows
the fraction of correct predictions prior to seeing the first flag, after 1 flag, after 2 flags, after 3 flags,
and after 4 flags.

D.3.1 Text Analysis of Participants’ Reported Use of Flags

At the end of Experiment 2, participants were asked to report how they made decisions

and how they responded to the presence of flags for the videos.2 In what follows, we report

automated text analyses based on what participants wrote. To prepare the analysis, typos

were removed and the correct spelling was used.We also used manual coding, as reported

in the manuscript, and use these automated analyses to complement the results in the

manuscript.

2There was a typo in the question, which was “Please describe how you made your guesses when you say
[saw] a flag for the video.”
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Our first analysis calculates the log-odds ratios of words in each treatment, Flags-Before

compared to Flags-After. We focus on words that are mentioned at least 5 times by the

participants, and plot the words with the 20 largest absolute values of the log-odds ratio,

where the odds of a word been mentioned in Flag-Before is compared to the odds of it being

used in Flag-After. Figure D.5 shows the words and their log-odds ratios. Words such as

“trust”, “prediction”, “influenced”, and “computer” were more likely in Flag-Before, while

words such as “instincts” and “intuition” were more likely in Flag-After.

Figure D.5: Word Use in Explaining Use of Flags
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Notes: This figure shows the log-odds rations of words in Flags-Before compared to Flags-After. The
sample focuses on words that were mentioned at least 5 times by participants.

We also estimate whether there are words that are “discriminating” of each flag timing

using logistic lasso regressions. In particular, using rigorous lasso, we find that there are 2

selected (post logit) words that are indicative of Flag-Before are “algorithm” and “tended,”

while 2 words are indicative of Flag-After, “didn’t” and “guess.” Alternative estimations

using cross validation yield qualitatively similar results. Participants often indicated trust

in the algorithm, and that they tended to follow the predictions in flagged videos in Flag-

Before. By contrast, in Flag-After, participants often indicated distrust of the algorithm or

choosing to ignore it, paying more attention to what they saw in the videos.
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D.4 Contestant Features, Beliefs, Predictions & Stealing

D.4.1 Influence and Partial Dependence Plots for GBMs

Table D.5: Relative Influence of Contestant Characteristics on Predicted Stealing Risk

Covariate Type Relative influence

Prize at stake (Jackpot amount) Game 8.44
Voice intensity Voice 7.92
Sad Facial 7.66
Sentiment Score Speech 7.14
Gaze left Facial 7.01
Age Contestant 6.01
Explicit, unconditional promise Speech 5.65
Disgusted Facial 5.63
Happy Facial 4.67
Angry Facial 4.17

Notes: This table shows the covariates with the highest relative influence on

predictions generated by the GBM, excluding quality of the video, as rated

by FaceReader (importance 6.94) and the number of non-missing frames

(importance 4.98).

Figure D.6: Partial Dependence Plots
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Notes: This figure shows the partial dependent plots for continuous covariates with the highest relative influences on the
likelihood of stealing. Explicit, unconditional promise is not included as it only only takes values 0, 1 or 2. For this covariate,
the predicted likelihood of stealing is 0.49 if the contestant does not make such a promise, while it is 0.45 if the contestant
makes at least one statement containing such promise.
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D.4.2 Correlation between Predictions and Features

To examine whether the ML model correlates with the correct features for stealing whereas

participants’ beliefs do not, we examine the relationship between the contestant’s emotions,

speech, and other covariates and beliefs as well as model predictions. In each case, we

estimate simple linear models on these features of the contestant, which are standardized

if they are continuous variables. A concern is that the ML model allows for relationships

to be nonlinear, whereas this model is linear. However, we obtain similar conclusions when

we focus on predictions by a linear model (e.g., the lasso), as shown in the next section.

A summary of the regression analysis is presented in Figure D.7, which plots the marginal

effects of each feature on the actual steal risk against those on the ML and participant

predictions.

Figure D.7: Marginal Effects of Contestant Features on Predicted and Actual Steal Risk
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Notes: This figure shows the marginal effect of each feature on the actual likelihood of stealing on the x-axis and the correlation
between ML’s prediction (using GBM) or participant’s predictions (all treatments in Experiment 1) on the y-axis. The dots that
are full show the relationship between actual and ML predictions for stealing, while the empty dots show the relationship between
actual and participant predictions, for each feature. Detailed regression results are shown in Table D.6, and disaggregated
regression results for different participant treatments are shown in Table D.7.

28



Table D.6: The Relationship Between Contestant Features, Beliefs, GBM Predictions & Stealing

(1) (2) (3) (4) (5) (6)
ML prediction Belief about stealing

Steal (=1) about stealing All treatments
Coeff. SE Coeff. SE Coeff. SE

Female -0.057 (0.058) -0.014 (0.017) -0.020* (0.011)
Age est. -0.108*** (0.023) -0.039*** (0.007) -0.006 (0.006)
Happy -0.048* (0.027) -0.026*** (0.008) -0.008 (0.006)
Sad -0.028 (0.026) -0.002 (0.009) 0.002 (0.004)
Angry 0.039 (0.026) 0.022*** (0.008) -0.010** (0.004)
Surprised -0.013 (0.030) 0.009 (0.009) -0.010* (0.005)
Scared -0.008 (0.027) -0.006 (0.007) 0.007 (0.005)
Disgusted 0.041 (0.027) 0.009 (0.008) 0.002 (0.004)
Gaze forward -0.039 (0.034) 0.008 (0.011) 0.010* (0.006)
Gaze left 0.024 (0.043) 0.059*** (0.015) 0.016** (0.007)
Gaze right -0.062 (0.047) 0.006 (0.015) 0.014 (0.009)
Word count 0.050 (0.045) 0.026* (0.014) -0.010 (0.009)
Word sentiment score 0.037 (0.023) 0.045*** (0.007) 0.003 (0.005)
Explicit, unconditional promise -0.102*** (0.023) -0.078*** (0.007) -0.004 (0.005)
Explicit, conditional promise 0.017 (0.022) 0.003 (0.005) -0.006 (0.004)
Implicit, conditional promise -0.025 (0.024) -0.004 (0.007) -0.000 (0.004)
Implicit, unconditional promise -0.065*** (0.024) -0.004 (0.007) -0.013** (0.005)
Jackpot mentioned 0.055 (0.087) 0.168*** (0.020) 0.032** (0.015)
Jackpot mentioned X Jackpot amount 0.038* (0.022) 0.019*** (0.007) -0.017*** (0.004)
Voice pitch 0.043 (0.027) 0.019** (0.007) -0.002 (0.005)
Voice intensity -0.022 (0.030) -0.022** (0.009) -0.008 (0.006)
Quality of image 0.058 (0.038) 0.043*** (0.011) -0.012* (0.007)
Fraction of video analyzed by FaceReader 0.032 (0.048) -0.010 (0.017) 0.001 (0.009)
Nr. of video frames 0.015 (0.038) 0.014 (0.012) 0.022*** (0.008)
Constant 0.440*** (0.087) 0.314*** (0.020) 0.406*** (0.018)

Observations 430 430 12,300
Clusters - - 615
R-squared 0.168 0.528 0.019

Notes: This table presents the coefficients and standard errors from linear regression models on the relationship between
actual stealing (columns 1-2), GBM predictions about stealing (columns 3-4), and participant beliefs in Experiment 1, all
conditions pooled (columns 5-6), with contestant features in the conversation prior to the steal decision. Robust standard
errors are computed for predictions (columns 1-2) and clustered at the contestant level for the regression in which human
beliefs are the dependent variable (columns 5-6). ***, **, and * indicate 1%, 5%, and 10% significance levels, respectively.
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Table D.7: Detailed Analysis of the Relationship Between Contestant Features, Beliefs, GBM
Predictions & Stealing, by Treatment and Sample

(1) (2) (3) (4) (5) (6) (7) (8)
GBM Belief about stealing

ML prediction No Learning No Learning Learning
about stealing Prolific UCSD Laboratory

Coeff. SE Coeff. SE Coeff. SE Coeff. SE

Female -0.014 (0.017) -0.014 (0.013) -0.012 (0.016) -0.018 (0.014)
Age est. -0.039*** (0.007) -0.002 (0.009) -0.003 (0.007) -0.020*** (0.006)
Happy -0.026*** (0.008) -0.007 (0.008) -0.011 (0.009) -0.007 (0.008)
Sad -0.002 (0.009) 0.002 (0.006) 0.002 (0.006) 0.002 (0.006)
Angry 0.022*** (0.008) -0.007 (0.006) -0.012** (0.006) -0.009* (0.005)
Surprised 0.009 (0.009) -0.010 (0.007) -0.014* (0.008) -0.007 (0.007)
Scared -0.006 (0.007) 0.009 (0.007) -0.007 (0.007) 0.014** (0.006)
Disgusted 0.009 (0.008) 0.001 (0.005) -0.003 (0.007) 0.010* (0.005)
Gaze forward 0.008 (0.011) 0.013* (0.008) -0.000 (0.008) 0.011 (0.009)
Gaze left 0.059*** (0.015) 0.024** (0.010) -0.005 (0.011) 0.013 (0.010)
Gaze right 0.006 (0.015) 0.022** (0.011) -0.009 (0.012) 0.007 (0.011)
Word count 0.026* (0.014) -0.005 (0.013) -0.015 (0.012) -0.012 (0.011)
Word sentiment score 0.045*** (0.007) -0.000 (0.006) 0.010 (0.007) 0.004 (0.006)
Explicit, unconditional promise -0.078*** (0.007) -0.008 (0.006) 0.003 (0.007) -0.002 (0.006)
Explicit, conditional promise 0.003 (0.005) -0.008 (0.006) -0.002 (0.006) -0.007 (0.005)
Implicit, conditional promise -0.004 (0.007) 0.004 (0.005) -0.004 (0.006) -0.005 (0.007)
Implicit, unconditional promise -0.004 (0.007) -0.010 (0.007) -0.019*** (0.006) -0.007 (0.007)
Jackpot mentioned 0.168*** (0.020) 0.011 (0.017) 0.037* (0.022) 0.017 (0.021)
Jackpot mentioned X Jackpot amount 0.019*** (0.007) -0.016*** (0.005) -0.019*** (0.006) -0.012** (0.006)
Voice pitch 0.019** (0.007) -0.008 (0.007) -0.003 (0.007) 0.003 (0.006)
Voice intensity -0.022** (0.009) -0.012 (0.009) -0.006 (0.009) -0.001 (0.007)
Quality of image 0.043*** (0.011) -0.021** (0.009) 0.001 (0.010) -0.000 (0.009)
Fraction of video analyzed by FaceReader -0.010 (0.017) -0.001 (0.012) 0.016 (0.013) -0.005 (0.012)
Nr. of video frames 0.014 (0.012) 0.022* (0.012) 0.021** (0.010) 0.020** (0.009)
Constant 0.314*** (0.020) 0.399*** (0.021) 0.435*** (0.032) 0.430*** (0.030)

Observations 430 6,200 2,920 3,180
Clusters - 310 146 159
R-squared 0.528 0.023 0.026 0.031

Notes: This table presents the coefficients and standard errors from linear regression models on the relationship between GBM predictions
about stealing (columns 1-2), and participant beliefs in the no learning condition (columns 3-4) and in the learning condition (columns 5-6), with
contestant features in the conversation prior to the steal decision. Robust standard errors are computed for predictions (columns 1-2) and clustered
at the participant level for the regressions in which human beliefs are the dependent variables (columns 3-6). ***, **, and * indicate 1%, 5%, and
10% significance levels, respectively.
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D.4.3 Lasso

We conduct the same correlational analyses in this section, using LASSO predictions instead

of GBMs. The results are qualitatively similar.

Table D.8: The Relationship Between Contestant Features, Beliefs, Lasso Predictions & Stealing

(1) (2) (3) (4) (5) (6) (7) (8)
Belief about stealing

ML prediction No Learning No Learning Learning
about stealing Prolific UCSD laboratory Prolific

Coeff. SE Coeff. SE Coeff. SE Coeff. SE

Female 0.000 (0.000) -0.019** (0.009) -0.015 (0.014) -0.022 (0.012)
Age est. -0.043*** (0.000) -0.003 (0.004) -0.004 (0.006) -0.020*** (0.006)
Happy -0.010*** (0.000) -0.004 (0.004) -0.010 (0.007) -0.006 (0.006)
Sad 0.000 (0.000) 0.001 (0.004) 0.001 (0.006) 0.000 (0.006)
Angry 0.000 (0.000) -0.006 (0.005) -0.012** (0.006) -0.008 (0.006)
Surprised -0.000 (0.000) -0.010* (0.005) -0.014* (0.008) -0.007 (0.007)
Scared -0.000 (0.000) 0.008** (0.004) -0.007 (0.007) 0.014** (0.006)
Disgusted -0.000 (0.000) 0.001 (0.005) -0.003 (0.005) 0.010 (0.006)
Gaze forward 0.000 (0.000) 0.015** (0.006) -0.000 (0.007) 0.012 (0.008)
Gaze left 0.035*** (0.000) 0.024*** (0.007) -0.005 (0.011) 0.014 (0.010)
Gaze right 0.000 (0.000) 0.023*** (0.007) -0.009 (0.011) 0.009 (0.010)
Word count -0.000 (0.000) -0.003 (0.007) -0.014 (0.009) -0.012 (0.011)
Word sentiment score 0.000 (0.000) 0.000 (0.004) 0.010** (0.005) 0.005 (0.005)
Explicit, unconditional promise -0.060*** (0.000) -0.009** (0.004) 0.003 (0.005) -0.002 (0.006)
Explicit, conditional promise -0.000 (0.000) -0.007** (0.004) -0.002 (0.005) -0.007 (0.005)
Implicit, conditional promise 0.000* (0.000) 0.005 (0.004) -0.003 (0.005) -0.004 (0.006)
Implicit, unconditional promise -0.009*** (0.000) -0.010*** (0.004) -0.017*** (0.006) -0.005 (0.006)
Jackpot mentioned -0.001*** (0.000) -0.004 (0.009) -0.002 (0.011) -0.022** (0.006)
Jackpot mentioned X Jackpot amount 0.001* (0.000) -0.009*** (0.005) -0.013** (0.005) -0.007 (0.005)
Voice pitch 0.000 (0.000) -0.007* (0.004) -0.003 (0.005) 0.003 (0.006)
Voice intensity 0.000 (0.000) -0.012** (0.005) -0.008 (0.006) -0.000 (0.006)
Quality of image -0.000 (0.000) -0.021*** (0.006) 0.001 (0.008) 0.001 (0.009)
Fraction of video analyzed by FaceReader -0.000 (0.000) -0.002 (0.008) 0.015 (0.012) -0.010 (0.010)
Nr. of video frames -0.000 (0.000) 0.020*** (0.006) 0.019*** (0.010) 0.019** (0.009)
Constant 0.461*** (0.000) 0.444*** (0.010) 0.482*** (0.015) 0.517*** (0.012)

Observations 430 6,200 2,920 3,180
Clusters - 310 146 159
R-squared 0.998 0.018 0.020 0.015

Notes: This table presents the coefficients and standard errors from linear regression models on the relationship between lasso predictions about
stealing (columns 1-2), participant beliefs in the no learning condition (columns 3-4) and in the learning condition (columns 5-6), with contestant
features in the conversation prior to the steal decision. Robust standard errors are computed for predictions and actual stealing (columns 1-2) and
clustered at the participant level for the regressions in which human beliefs are the dependent variables (columns 3-8). ***, **, and * indicate 1%,
5%, and 10% significance levels, respectively.
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D.5 Nonverbal Information Treatment: Results on Accuracy

In Experiment 1, 240 participants made predictions about contestants’ decisions to steal

or split, by watching only muted videos, in the Nonverbal information treatment. These

participants took part in first wave of Experiment 1, and hence we compare their behavior to

that of those individuals in the main (Verbal information treatment) in the same wave (N =

258). In the Nonverbal information treatment, the accuracy of participants, as measured

by the AUC was 0.4945 (95% CI is 0.47793, 0.51099). This accuracy is significantly lower

than that in the main (Verbal information) treatment, reported in the main text (χ2-test,

p-value<0.001), showing that participants paid attention and use features of contestant’s

conversations in their predictions. The fraction of correct guesses, using 50% as the threshold,

was 49.75%. This fraction is also significantly lower than the fraction of correct guesses in

the main (Verbal information) treatment (t-test, p-value<0.001).

Compared to the Verbal treatment, participants were less confident in their absolute abil-

ity to guess correctly, but their relative confidence was not significantly different. They

believed to have correctly guesses contestant behavior in 52.6% of the cases in the Nonver-

bal information treatment, while they believed to have guessed correctly in 58.5% of the

cases with Verbal information (t-test, p-value<0.001). The belief about the quartile of the

distribution in which a participant’s ability lied was 2.25 in the Nonverbal information treat-

ment, while it was 2.17 in the Verbal information treatment. The difference is not significant

(χ2-test, p-value=0.553).
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D.6 Additional Experiment: Flagging and Delegation Decisions

D.6.1 Experimental Design

In a separate experiment, we examined individuals’ preferences to delegate their predictions

to an algorithm. In this experiment, flags were introduced at the same time as the video,

and their timing was not varied across treatments. The experiment consisted of three treat-

ments: control (N = 150), ML-flags (N = 256), and ML-delegation (N = 245). The control

condition did not provide participants with any information about the ML algorithm’s pre-

diction.

In the ML-flags treatment, as in Experiment 2 in the main paper, participants were

told that the researchers had used the contestants’ facial expressions and speech to train a

standard ML algorithm to predict contestant decisions. They were then told, “We used this

algorithm to ‘flag’ four out of the 20 videos for which the algorithm either predicted that

the contestant chose to split with very high chance or very low.”

The ML-delegation treatment gave participants the option to delegate their prediction

for the four videos that the ML algorithm would flag at the beginning of the experiment.

Participants knew that if they chose to delegate, their prediction would be that of the ML

algorithm. They still saw the video of the contestant and the same flag, but the option to

make a prediction was removed. If they chose not delegate, the videos and flags regarding

the ML predictions were the same as in the ML-flags treatment.

As in Experiment 2, to identify the effect of flags at the video level, we used a group of

20 videos, which included four videos for which the ML algorithm had predicted over a 70%

likelihood of steal, and four videos for which it had predicted over a 70% likelihood of split.

All flags provided participants correct feedback. Each participant could be presented with

one of two groups of “flags.” In the first group, each participant saw a message indicating a

high predicted likelihood of stealing for two videos and a message indicating a high predicted

likelihood of splitting for two videos. In the second group, the other two (out of four) videos

with a high predicted likelihood of splitting (or stealing) were flagged for the participant.

This way, all participants in the ML-flags treatment saw four flagged videos in total. But,

across the groups, we varied which videos were flagged.

After completing the 20 predictions, we elicited three beliefs from participants. First, we

elicited their estimate of how many of their predictions were correct, using a 0.5 threshold.

Second, we elicited their estimated performance relative to other participants, by selecting

the quartile to which they thought they belonged. Third, in the treatments with flags, we

elicited participants’ belief regarding the algorithm’s accuracy. In all cases, they received

a $1 bonus if their guess was correct. Participants concluded the study by reporting their

gender, age, and whether they had seen the TV show before.

Participants received received $3.00, as a fixed participation fee, in addition to incentives

depending on their predictions for one randomly-selected video and their answers about
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their ability and that of the algorithm. The proportion of female participants was 47.9%,

the average age of participants was 33.29, and 90.0% reported never having seen the TV

show before the study.

D.6.2 Results

We start by describing the decision to delegate in the ML-delegation treatment, and then

examine how flags affect beliefs and accuracy.

When given the opportunity to delegate, we find 53.5% of participants choose to delegate

their predictions for videos flagged by the algorithm. In probit models, we examine whether

individual characteristics, accuracy, and beliefs regarding the algorithm’s accuracy as well

as own performance are related to the delegation decision. Table D.9 shows that women

are not significantly more likely to delegate than men, but older people exhibit a higher

propensity to delegate. A participant who is 10 years older than the mean participant, who

is 34 years old, exhibits a 0.7-percentage-point higher likelihood of delegating her predictions

(p-value= 0.013).

Table D.9: Determinants of Delegation to the Algorithm

(1) (2) (3)
Delegate = 1

Female 0.017 0.016 0.025
(0.064) (0.064) (0.063)

Age 0.007*** 0.007*** 0.007***
(0.003) (0.003) (0.003)

Familiarity with TV show -0.130 -0.133 -0.137
(0.096) (0.096) (0.094)

Believed own ability -0.154 -0.275
(0.212) (0.212)

Believed ability ML 0.463***
(0.139)

Observations 245 245 245

Notes: This table presents the marginal effects, calculated at the means
of the regressors, in probit regression models of participants’ decision to
delegate. Believed own ability is the fraction of correct predictions that the
participant believed she made (using a 50% threshold). Believed ability ML
is the fraction of correct predictions (out of 4) that the participant believed
the ML made. Standard errors are shown in parentheses. *, **, and ***
indicate significance at the 10%, 5%, and 1% levels.

Participants who believe the ML is more accurate are significantly more likely to delegate.

On average, participants who delegate believe that the algorithm is accurate 68.1% of the

time, whereas those who choose not to delegate believe the flags by the algorithm are correct
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59.6% of the time (p-value= 0.002). Participants’ beliefs about their own ability are not

significantly related to their delegation decision. Figure D.8 shows the relationship between

delegation and beliefs about own and ML ability, based on a probit regression on the like-

lihood of delegating and allowing the relationship with beliefs to be quadratic. Consistent

with Table D.9, higher beliefs about ML ability increase the likelihood of delegation, whereas

beliefs about own ability do not exhibit a significant relationship with delegation.

Figure D.8: Beliefs about Own and ML Ability and Delegation
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Notes: This figure shows the relationship between participants’ beliefs about their own ability
and delegation frequency, as well as the relationship between participant beliefs about ML ability
to predict stealing and delegation frequency. The figure plots predictive margins based on a
probit regression in which the delegation decision is the dependent variable. Beliefs about ML
ability and about own ability are allowed to be nonlinear (quadratic). The regression includes the
participants’ gender, age, and familiarity with the TV show as covariates. Whisked bars indicate
95% confidence intervals.

Table D.10 extends the main results, exploring nonlinearity in the relationship between

beliefs and delegation, and examining the relationship with actual accuracy. The table shows

the complete regression coefficients underlying Figure D.8 (in column (2)).

We next examine the effects of flags on participants’ predictions, in the ML-Flags and

ML-Delegation treatments, compared to Control. On average, participants react to the flags

of the algorithm. Figure D.9 shows the average prediction in each treatment, conditional on

whether the algorithm flagged the contestant in the video as having a very low or very high

chance of stealing, or if there was no flag.

Without flags, participants believe the chance of stealing is 39.1% for videos that the ML

35



Table D.10: Determinants of the Delegation Decision: Robustness

(1) (2) (3) (4)
Delegate = 1

Female 0.066 0.055 0.027 -0.007
(0.168) (0.169) (0.170) (0.173)

Age 0.018** 0.019** 0.019** 0.020***
(0.007) (0.007) (0.007) (0.008)

Familiar with show -0.373 -0.348 -0.350 -0.309
(0.267) (0.272) (0.269) (0.275)

Believed ability ML 1.237*** 2.728 1.353*** 2.915
(0.396) (2.057) (0.400) (2.055)

Believed ability ML2 (squared) -1.223 -1.310
(1.566) (1.571)

Believed own ability -0.736 5.456 -0.917 5.801*
(0.573) (3.337) (0.578) (3.319)

Believed own ability2 (squared) -5.151* -5.558**
(2.724) (2.713)

Actual own ability -1.810*** 5.462
(0.700) (5.606)

Actual own ability2 (squared) -6.309
(4.725)

Constant -0.599 -2.790** 0.471 -3.892**
(0.504) (1.159) (0.654) (1.969)

Observations 245 245 245 245

Notes: This table presents the coefficients and standard errors from probit regression
models on the relationship between delegation decisions and participant characteristics
and beliefs. Standard errors are presented in parentheses. ***, **, and * indicate 1%,
5%, and 10% significance levels, respectively.

algorithm flagged as “very low chance of stealing,” 45.5% for those flagged as “very high,”

and 45.03% for videos that were never flagged. The difference between videos flagged as “very

low” or “very high chance of stealing” is significant (p-value= 0.004) at 6 percentage points.

Flags significantly change predictions. Participants in the ML-flags treatment reduce their

predicted chance of stealing to 28.7% when the video is flagged as “low chance of stealing” and

increase it to 62.4% when the video is flagged as “high chance of stealing.” A similar effect

is observed in ML-delegation for those participants who do not delegate. The predictions of

participants who delegate are the predictions of the algorithm (14% chance of stealing for

those videos flagged as low chance, and 79% for those videos flagged as high chance).

Table D.11 examines the effects of the treatments and the flags on beliefs and the accu-

racy of predictions, including contestant fixed effects (as well as an indicator for whether

participants were assigned to the first or second group of flags). Columns (1)–(3) reveal no

treatment effects for videos that were not flagged. All changes in beliefs occur in response

to flagging. A “very low” flag decreases the predicted chance of stealing by 13.2 percentage

points in the ML-flags treatment by 9.9 percentage points among those who do not delegate

in the ML-delegation treatment, and by 25.8 percentage points when participants delegate

and hence their predictions are those of the algorithm.

Because flags affect beliefs and they are correct, the accuracy of beliefs for flagged videos
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Figure D.9: The Effects of Flags on Beliefs
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Notes: This figure shows the average predicted chance that the contestant steals, by treatment in
the Delegation Experiment, separating those who do not delegate and those who delegate in the
ML-delegation treatment. Whisked bars denote 95% confidence intervals. Confidence intervals
are not included for those who delegate in the ML-delegation treatment, because these represent
the average prediction of the algorithm for the four flagged videos.

increases. Table D.12 shows that in the ML-flags treatment, the fraction of correct guesses is

81.4% for videos flagged as low chance of stealing and 68.6% for videos flagged as high chance,

compared with 71.1% and 39.9%, respectively, in the control treatment. A similar finding is

observed for participants in the ML-delegation treatment who choose not to delegate to the

algorithm. The effect of flags is restricted to videos that are flagged, because flags do not

increase accuracy for those videos that were not flagged. Across all treatments, the accuracy

for videos that were not flagged is between 56.8% and 57.8%.

Column (4) of Table D.11 reveals that flagging videos increases accuracy overall, by 4 to

9 percentage points, although only 4 out of 20 videos were flagged. Columns (5) and (6)

confirm that the effects stem from increases in accuracy for flagged videos.
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Table D.11: Effects of Flagging on Beliefs and Accuracy

(1) (2) (3) (4) (5) (6)
Predicted chance contestant steals Correct prediction

Treatment Effects
ML Flag 0.014 0.012 0.014 0.040*** -0.002 -0.001

(0.015) (0.015) (0.015) (0.011) (0.011) (0.011)
ML Delegation-Not Delegate -0.001 -0.004 -0.005 0.039*** 0.008 0.007

(0.018) (0.018) (0.018) (0.015) (0.015) (0.015)
ML Delegation-Delegate -0.002 -0.009 -0.005 0.092*** 0.002 0.001

(0.016) (0.018) (0.017) (0.011) (0.013) (0.013)
Treatment X Flag Effects
ML Flag X Very low flag -0.132*** -0.132*** 0.160*** 0.160***

(0.012) (0.012) (0.021) (0.021)
ML Flag X Very high flag 0.147*** 0.147*** 0.253*** 0.253***

(0.013) (0.013) (0.025) (0.025)
ML Delegation-Not Delegate X Very low flag -0.099*** -0.099*** 0.116*** 0.116***

(0.018) (0.018) (0.031) (0.031)
ML Delegation-Not Delegate X Very high flag 0.137*** 0.137*** 0.189*** 0.189***

(0.019) (0.019) (0.037) (0.037)
ML Delegation-Delegate X Very low flag -0.258*** -0.258*** 0.342*** 0.342***

(0.013) (0.013) (0.016) (0.016)
ML Delegation-Delegate X Very high flag 0.330*** 0.330*** 0.560*** 0.560***

(0.014) (0.014) (0.017) (0.017)
Participant Age -0.001*** 0.000

(0.001) (0.000)
Female participant 0.004 0.018**

(0.011) (0.009)
Familiar with show 0.016 -0.031**

(0.018) (0.015)
-0.007 -0.001

Constant 0.549*** 0.552*** 0.598*** 0.536*** 0.576*** 0.560***
(0.015) (0.015) (0.024) (0.021) (0.021) (0.024)

Observations 13,000 13,000 13,000 13,000 13,000 13,000
R-squared 0.111 0.157 0.161 0.073 0.107 0.108

Notes: This table presents the coefficients and standard errors from linear regression models of participants’ beliefs
and correctness of predictions (columns (1)-(3)), using the 50% threshold (columns (4)-(6)). All specifications
include video (contestant) fixed effects and an indicator for which group of flags the participant was assigned to.
Robust standard errors clustered at the participant level are presented throughout. *, **, *** indicate significance
at the 10%, 5%, and 1% levels.
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Table D.12: Accuracy and Beliefs about Accuracy

(1) (2) (3) (4)
Control ML-Flags ML-Delegation

Delegate Not delegate

Fraction correct guesses
Videos flagged as low chance 71.10% 81.40% 78.10% 100.00%
Videos flagged as high chance 39.90% 68.60% 63.60% 100.00%
Not-flagged videos 56.80% 56.90% 57.80% 57.10%

AUC
Flagged videos 0.57 0.82 0.79 1.00
Not-flagged videos 0.60 0.59 0.62 0.61

Beliefs
Absolute ability 57.00% 57.20% 59.50% 59.00%
Relative ability (average quartile, 1-4) 2.3 2.26 2.24 2.22
ML accuracy - 60.50% 59.60% 68.10%

Notes: This table shows the fraction of correct guesses (50% threshold), AUC, and participants’ beliefs
about ability, by treatment.
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REFORMS checklist  
 
Visit reforms.cs.princeton.edu for the latest version. 
  
About. The REFORMS checklist lists items that should be reported in a scientific study that 
uses machine learning (ML) methods. It is intended to accompany the paper or report that 
introduces an ML model: for instance, as an appendix or supplemental material. The checklist 
consists of 32 questions spread across 8 modules. For each item, either list the section name, 
section number, or page number in the paper where the item is reported, or justify why a given 
item is not filled out. Note that not all of these items need to be reported in the main text of the 
paper; they could be reported in an appendix or supplementary files. 
 
Some items in the checklist could be hard to report for specific studies. For instance, including 
a reproduction script to computationally reproduce all results (2e.) might not be possible for 
studies performed on academic computing clusters or those which use private data that 
cannot be released. Instead of requiring strict adherence for each item, we suggest authors 
and referees decide which items are relevant for a study and where details can be reported 
better. The items in our reporting standards could be a helpful starting point. 
 
 
 
The text in italics below provides the answer to each of the questions in the checklist.  
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Checklist for reporting ML-based science 
 
 
Module 1: Study goals 
 

1a. Population or distribution about which the scientific claim is made. 
 
Individuals who are tasked with detecting deception by contestants in the TV show “Golden 
Balls”, in online experiments conducted on Prolific Academic and UC San Diego. Detailed 
information about the TV show is provided in Section 2 of the paper. The details about the 
individuals who participate in the experiments are provided in Section 3 of the paper.  
 
1b. Motivation for choosing this population or distribution (1a.). 
 
This population is chosen because it has been shown to be a highly attentive sample of 
participants that exhibits behaviors that are also observed in representative samples of the 
US population (Peer et al., 2022).  
 
1c. Motivation for the use of ML methods in the study. 
 
Section 3, subsection 3.2.: 
“Since the behavior of a contestant prior to the cooperation decision contains many 
different nonverbal as well as verbal features, we use ML for predictive modeling of 
contestant behavior.” 
 

 
Module 2: Computational reproducibility 
 
All items in this module will be provided in the Replication Package of the paper.  
 

2a. Dataset used for training and evaluating the model along with link or DOI to uniquely 
identify the dataset. 
 
2b. Code used to train and evaluate the model and produce the results reported in the 
paper along with link or DOI to uniquely identify the version of the code used. 
 
2c. Description of the computing infrastructure used.  

● Hardware infrastructure: CPU, GPU, RAM, disk space etc. 
● Operating system. 
● Software environment: Programming language and version, documentation of all 

packages used along with versions and dependencies (e.g., through a 
requirements.txt file). 

● An estimate of the time taken to generate the results. 
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2d. README file which contains instructions for generating the results using the provided 
dataset and code. 
 
2e. Reproduction script to produce all results reported in the paper1.   

 
 
Module 3: Data quality 
 

3a. Source(s) of data, separately for the training and evaluation datasets (if applicable), 
along with the time when the dataset(s) are collected, the source and process of ground-
truth annotations, and other data documentation.  
 
- TV show episodes: obtained from Donja Darai for research purposes. Online Appendix A 

provides more details, and Footnote 2 specifies the source of the data for the TV show.  
- Facial and Vocal Analyses: Obtained from FaceReader and Praat. Section 2.1.1 and 

Online Appendix B describe the source of data for the nonverbal features in the videos.  
- Text Analyses: Transcripts obtained from Turmunkh et al. (2019), analyzed using 

Sentimentr package in R. Section 2.1.2 and Online Appendix B describe the sources of 
data for the verbal features in the videos.  

- README file and Online Appendix B provide further details on the editing, processing, 
and feature extraction for all videos.  

- Behavioral Data: Obtained via Qualtrics surveys, from participants in Prolific Academic 
and UCSD. Online Appendix A provides details about the instructions shown to 
participants.  

 
3b. Distribution or set from which the dataset is sampled (i.e., the sampling frame). 
 
- Section 2.2. provides additional information on the sample, listing exclusions. 
- Online Appendix A.1. provides further details for the sampling of videos.  
 
3c. Justification for why the dataset is useful for the modeling task at hand. 
 
It was the largest number of videos that we could obtain for this well-known TV show. The 
reasons for studying this TV show are provided in Section 2. 
 
3d. The definition of the outcome variable of the model along with descriptive statistics, if 
applicable.  
 
The outcome variable is the decision to split or steal. 54% of contestants split (see Section 
2).  

 
1 Note that this is a high bar for computational reproducibility. It might not be possible to provide such a 
script—for instance, if the analysis is run on an academic computing cluster, or if the dataset does not 
allow for programmatic download. 
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3e. Number of samples in the dataset. 
 
430 videos. 302 in the training set, and 128 in the test set. Details on the samples are 
provided in Online Appendix D.  
 
3f. Percentage of missing data, split by class for a categorical outcome variable. 
 
No missing data on the outcome variable.  
 

3g. Justification for why the distribution or set from which the dataset is drawn (3b.) is 
representative of the one about which the scientific claim is being made (1a.).  

 
 We obtain as many episodes of the TV show Golden Balls as possible and show in Footnote 

2 that the features of contestants on the show are very similar to those exhibited in a 
sample including 284 episodes in Turkmunkh et al. (2019), which has 69 more videos than 
our sample of 215.  

 
 
Module 4: Data preprocessing 
 

4a. Identification of whether any samples are excluded with a rationale for why they are 
excluded. 
 
Online Appendix A.1. describes the exclusions and the rationale for them. 
 
4b. How impossible or corrupt samples are dealt with. 
 
Online Appendix B.1. describes the samples that could not be extracted from the videos 
using FaceReader.  

 
4c. All transformations of the dataset from its raw form (3a.) to the form used in the model, 
for instance, treatment of missing data and normalization. 
 
No transformations.  

 
Module 5: Modeling  
 

5a. Detailed descriptions of all models trained, including: 
● All features used in the model (including any feature selection).  
● Types of models implemented (e.g., Random Forests, Neural Networks). 
● Loss function used. 
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“We randomly split the sample into a training dataset (302 videos) and a testing dataset 
(128 videos).” (Section 3).  

 
Online Appendix C.1 provides the model, loss function and decision-making rule for 
GBMs.  Online Appendix C.3. provides the same details for Rigorous Logistic Lasso. 
Regarding the inputs and outputs, detailed information on inputs is provided in Online 
Appendix C.2. which lists all inputs. Only one output is used throughout, the choice to 
steal (or split).  

 
5b. Justification for the choice of model types implemented. 
 
“We focus on a supervised learning approach: generalized boosted regression trees (GBM, 
see Friedman, 2002). Existing prediction models often present a tradeoff between 
interpretability and flexibility (e.g., Hastie et al., 2008). We focus on GBMs because they are 
flexible, allow for nonlinearity, and they have been previously found to have high predictive 
accuracy. We also estimate regularized logistic regression models with rigorous penalization 
(rigorous logistic lasso). This approach assumes linearity in the predictors but is easier to 
interpret than GBM. The predictive accuracy of both methods is similar. We focus on GBM 
in the main text and report results for rigorous logistic lasso in Online Appendix C. Both 
prediction methods are widely used and available as standard tools in existing software, 
which allows for easy replication and extension in future predictive.” (Section 3).  
 
5c. Method for evaluating the model(s) reported in the paper, including details of train-test 
splits or cross-validation folds. 
 
We train an algorithm to predict the likelihood that a contestant will choose steal. Then, we 
evaluate the algorithm's ability to predict out of sample. 
 
5d. Method for selecting the model(s) reported in the paper. 
 
The hyperparameter tuning is selected using 5-fold cross-validation, as described below.  
 
5e. For the model(s) reported in the paper, specify details about the hyperparameter tuning: 

● Range of hyper-parameters used and a justification for why this range is 
reasonable. 

● Method to select the best hyper-parameter configuration. 
● Specification of all hyper-parameters used to generate results reported in the 

paper. 
 
In Online Appendix C.2: “The interaction level of the regression trees is limited by the tree 
size J. In tuning the boosted tree parameters, we consider two levels J = 1, an additive 
model, and J = 2 a model in which two-variable interaction effects are also allowed. We also 
set the minimum number of observations in each terminal node, such that the resulting 
regions are based on enough observations. We explore a minimum of 5, 10, 20 or 25 
observations in each terminal node. We explore different values of the shrinkage parameter 
(or learning rate): 0.1, 0.2, 0.3 and 0.4. Since the number of observations in the training data 
is limited and we want to avoid overfitting, we also introduce subsampling. This implies that 
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in each iteration only a fraction of the training observations is used to grow the next tree. 
We explore values of 0.5, 0.6 and 0.7 for the subsampling parameter. (…) 
 
We train 100 trees (M = 100), use 5-fold cross-validation on the training sample, to 
determine the optimal interaction level of the model (J = 2), the minimum number of 
observations in each node (10), the learning rate (0.2), and the subsampling parameter 
(0.7).” 
 
5f. Justification that model comparisons are against appropriate baselines. 
 
We compare GBM to rigorous logistic lasso and logit regression. We explain the methods 
for rigorous logistic lasso in Online Appendix C.3., and describe the logit regression in 
Online Appendix C.5.  

 
Module 6: Data leakage 
 

6a. Justification that pre-processing (Section 4) and modeling (Section 5) steps only use 
information from the training dataset (and not the test dataset).  
 
All videos for which the facial analysis could be conducted in at least one frame are 
included (Online Appendix B). The train-test split is performed at the contestant level and no 
contestant appears both in the training and test set.  
 
6b. Methods to address dependencies or duplicates between the training and test datasets 
(e.g. different samples from the same patients are kept in the same dataset partition). 
 
Each contestant only appears in the train or the test set.  
 
6c. Justification that each feature or input used in the model is legitimate for the task at 
hand and does not lead to leakage. 
 
The justification for the features considered for each video is provided in Section 2: “The 
behavior and conversation of a contestant prior to the cooperation decision can be 
captured by nonverbal as well as verbal features. By nonverbal features, we refer to facial 
movements and expressions, which can reflect emotions. By verbal features, we refer to 
what contestants said and how they said it.  
 
People's choices may be linked to their emotions. For example, people who lie may feel fear 
and/or guilt and overall fewer positive emotions than those who tell the truth (Ekman, 2009). 
Facial expressions have been used recently in experimental games to measure how players 
strategically display emotions, for example, in the ultimatum game (e.g., van Leeuwen et al., 
2018; Chen et al., 2019), or to test how their smiles relate to behavior in the trust game 
(e.g., Centorrino et al., 2015a and 2015b). Serra-Garcia and Gneezy (2021) use simple 
probit models to relate facial expressions to truth-telling by experimental participants. In the 
study, participants were recorded in 30-second videos making either true or false 
statements. Several nonverbal features that are associated with the sender's truthfulness. 
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Hu and Ma (2020) use nonverbal and verbal features to estimate the positiveness in videos 
of startup pitches and relate these emotions to funding decisions.” 
 
Online Appendix C.2. provides further descriptions and justification for all the variables 
included.  

 
Module 7: Metrics and uncertainty 
 

7a. All metrics used to assess and compare model performance (e.g., accuracy, AUROC 
etc.). Justify that the metric used to select the final model is suitable for the task. 
 
“We use two measures of accuracy. The first and simplest measure captures whether the 
prediction is correct, using a 0.50 threshold. A prediction is correct if the contestant chose 
split (steal) and the predicted likelihood of split (steal) is above 0.5, and 0 otherwise.  
Second, we estimate the AUC.” (Section 2.3) 

 
7b. Uncertainty estimates (e.g., confidence intervals, standard deviations), and details of 
how these are calculated. 
 
Confidence intervals are calculated for the AUC. They are calculated based on the test 
proposed by DeLong et al. (1988).  
 
7c. Justification for the choice of statistical tests (if used) and a check for the assumptions 
of the statistical test. 
 
We use standard statistical tests to compare the performance of the ML algorithm to that of 
humans (t-tests).  

 
Module 8: Generalizability and limitations 
 

8a. Evidence of external validity. 
 
The paper focuses on a particular context, the TV show Golden Balls. The episodes are 
representative of the show, but external validity to other TV shows is not guaranteed.  
 
8b. Contexts in which the authors do not expect the study’s findings to hold. 
 
We do not know whether the same ML-model would perform similarly in other TV shows 
and in other instances in which individuals are recorded in conversations where there are 
incentives to lie.  
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