Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/224508 
Erscheinungsjahr: 
2020
Schriftenreihe/Nr.: 
Working Paper Series in Production and Energy No. 45
Verlag: 
Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP), Karlsruhe
Zusammenfassung: 
Machine learning and agent-based modeling are two popular tools in energy research. In this article, we propose an innovative methodology that combines these methods. For this purpose, we develop an electricity price forecasting technique using artificial neural networks and integrate the novel approach into the established agent-based electricity market simulation model PowerACE. In a case study covering ten interconnected European countries and a time horizon from 2020 until 2050 at hourly resolution, we benchmark the new forecasting approach against a simpler linear regression model as well as a naive forecast. Contrary to most of the related literature, we also evaluate the statistical significance of the superiority of one approach over another by conducting Diebold-Mariano hypothesis tests. Our major results can be summarized as follows. Firstly, in contrast to real-world electricity price forecasts, we find the naive approach to perform very poorly when deployed model-endogenously. Secondly, although the linear regression performs reasonably well, it is outperformed by the neural network approach. Thirdly, the use of an additional classifier for outlier handling substantially improves the forecasting accuracy, particularly for the linear regression approach. Finally, the choice of the model-endogenous forecasting method has a clear impact on simulated electricity prices. This latter finding is particularly crucial since these prices are a major results of electricity market models.
Schlagwörter: 
Agent-based simulation
Artificial neural network
Electricity price forecasting
Electricity market
Persistent Identifier der Erstveröffentlichung: 
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
1.39 MB





Publikationen in EconStor sind urheberrechtlich geschützt.