EconStor >
Technische Universität Dortmund >
Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen, Technische Universität Dortmund >
Technical Reports, SFB 475, TU Dortmund >

Please use this identifier to cite or link to this item:

http://hdl.handle.net/10419/49356
  
Title:On robustness properties of convex risk minimization methods for pattern recognition PDF Logo
Authors:Christmann, Andreas
Steinwart, Ingo
Issue Date:2003
Series/Report no.:Technical Report // Universität Dortmund, SFB 475 Komplexitätsreduktion in Multivariaten Datenstrukturen 2003,15
Abstract:The paper brings together methods from two disciplines: machine learning theory and robust statistics. Robustness properties of machine learning methods based on convex risk minimization are investigated for the problem of pattern recognition. Assumptions are given for the existence of the influence function of the classifiers and for bounds of the influence function. Kernel logistic regression, support vector machines, least squares and the AdaBoost loss function are treated as special cases. A sensitivity analysis of the support vector machine is given.
Subjects:AdaBoost loss function
influence function
kernel logistic regression
robustness
sensitivity curve
statistical learning
support vector machine
total variation
Document Type:Working Paper
Appears in Collections:Technical Reports, SFB 475, TU Dortmund

Files in This Item:
File Description SizeFormat
369860896.psOriginal Publication1.13 MBPostscript
369860896.pdf352.37 kBAdobe PDF
No. of Downloads: Counter Stats
Download bibliographical data as: BibTeX
Share on:http://hdl.handle.net/10419/49356

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.