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Abstract

The paper brings together methods from two disciplines: machine learning theory and
robust statistics. Robustness properties of machine learning methods based on convex risk
minimization are investigated for the problem of pattern recognition. Assumptions are
given for the existence of the influence function of the classifiers and for bounds of the
influence function. Kernel logistic regression, support vector machines, least squares and
the AdaBoost loss function are treated as special cases. A sensitivity analysis of the support
vector machine is given.
Keywords: AdaBoost loss function, influence function, kernel logistic regression, robust-
ness, sensitivity curve, statistical learning, support vector machine, total variation

1. Introduction

In pattern recognition and statistical machine learning two major goals are the estimation
of a functional relationship y ≈ f(x) between an outcome y and a vector of explanatory
variables x = (x1, . . . , xk)′ ∈ R

d and the prediction of an unobserved outcome ynew based
on an observed value xnew. The function f is unknown. One needs the implicit assumption
that the relationship between xnew and ynew is − at least almost − the same than in the
training data set (xi, yi), i = 1, . . . , n. Otherwise, it is useless to extract knowledge on
f from the training data set. The classical assumption in machine learning is, that the
training data (x, y) are independent and identically generated from an underlying unknown
distribution P for a pair of random variables (X, Y ). In practical applications the training
data set is often quite large, high dimensional and complex. The quality of the predictor
f(x) is measured by some loss function L(y, f(x)). The goal is to find a predictor fP(x)
which minimizes the expected loss, i.e.

EP L(Y, fP(X)) = min
f

EP L(Y, f(X)). (1)

In this paper we are interested in binary classification, where y ∈ Y := {−1, +1}. The
straightforward prediction rule is: predict y = +1 if f(x) ≥ 0, and predict y = −1 otherwise.
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The loss function for the classification error is given by I(y, f(x)) = I(yf(x) < 0)+I(f(x) =
0)I(y = −1), where I denotes the indicator function. Inspired by the law of large numbers
one might estimate fP by the minimizer femp of the empirical classification error, that is

femp = arg min
f

1
n

n∑
i=1

I(yi, f(xi)) . (2)

To avoid overfitting one usually has to restrict the class of functions f considered in (2).
Unfortunately, the classification function I is not convex and the minimization of (2) is often
NP-hard, cf. Hoeffgen et al. (1995). To circumvent this problem, one minimizes a convex
upper bound of the classification error function I(y, f), cf. Schölkopf and Smola (2002)
and Vapnik (1998). If L : Y × R → R is an appropriate convex function, one considers
the (approximate) minimization of the empirical risks. Consider the following estimation
problems:

f̂n,λ = arg min
f∈H

λ‖f‖2
H +

1
n

n∑
i=1

L(yi, f(xi)), (3)

(f̂n,λ, b̂n,λ) = arg min
f∈H, b∈R

λ‖f‖2
H +

1
n

n∑
i=1

L(yi, f(xi) + b), (4)

where λ > 0 is a small regularization parameter, H is a reproducing kernel Hilbert space
(RKHS) of a kernel k, and b is an unknown real-valued offset. The decision functions are
sign(f̂n,λ) or sign(f̂n,λ + b̂n,λ). Note, that in practice usually (4) is solved while many theo-
retical papers deal with (3) since the unregularized offset b often causes technical difficulties.
Problems (3) and (4) can be interpreted as a stochastic approximation of the minimization
of the theoretical regularized risk given in (5) or (6), respectively (cf. Vapnik, 1998, Zhang,
2001; Steinwart, 2002b):

fP,λ = arg min
f∈H

λ‖f‖2
H + EP L(Y, f(X)) (5)

(fP,λ, bP,λ) = arg min
f∈H, b∈R

λ‖f‖2
H + EP L(Y, f(X) + b) . (6)

The objective functions in (5) and (6) are denoted by Rreg
L,P,λ(.) and Rreg

L,P,λ(., .) in the fol-
lowing. Popular loss functions depend on y and f via v = yf(x) or v = y(f(x) + b). Some
important specifications of L are given in Table 1 and plotted in Figure 1. The support
vector machine (SVM) penalizes points linearly if v < 1. Kernel logistic regression and
AdaBoost use twice continuously differentiable loss functions. The loss function used by
kernel logistic regression penalizes misclassifications in a similar way than the SVM, i.e.
approximately linearly if v → −∞. The loss function used by AdaBoost increases expo-
nentially for v → −∞, cf. Freund and Schapire (1996), Friedman, Hastie and Tibshirani
(2000), and Hastie, Tibshirani and Friedman (2001). The modified Huber’s loss function,
cf. Zhang (2001), changes the modified least squares loss such that misclassified points with
v < −1 are penalized only linearly.

Steinwart (2002a) shows that SVM’s are universally consistent, i.e. the classification error
of f̂n,λ(.) converges to the optimal Bayes error EP I(Y, fP(X)) in probability, provided that
the reproducing kernel Hilbert space is dense in the space C(X), X ⊂ R

d compact, and
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Method L L′

Kernel Logistic Regression ln(1 + exp(−v)) −1/(1 + exp(v))
AdaBoost exp(−v) − exp(−v)
Support Vector Machine max(1 − v, 0) sgn(v − 1), if v 	= 1
Modified Huber −4v, if v < −1 −4, if v < −1

max(1 − v, 0)2, else −2 max(0, 1 − v), else
Least Squares (1 − v)2 2(v − 1)
Modified Least Squares max(1 − v, 0)2 −2 max(0, 1 − v)

Table 1: Loss functions, v = yf(x).
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Figure 1: Illustration of different loss functions.

λ = λn tends “slowly” to 0 for n → ∞. Zhang (2001) improves this result by showing
that for many convex loss functions the classifiers based on (3) are universally consistent
if λn → 0 and λnn → ∞. Steinwart (2002b) characterizes the loss functions which lead to
universally consistent classifiers and establishes universal consistency for classifiers based on
(3) and (4). Furthermore, he shows that there exist solutions of the minimization problems
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of the theoretical and of the empirical problems. Moreover, Steinwart (2003) gives lower
asymptotical bounds on the number of support vectors, i.e. on the data points with non-
vanishing coefficients, and investigates the asymptotic behavior of f̂n,λ(.) in terms of the
loss function L. Finally, it turns out as a by-product, that the solutions of (3) and (5) are
unique. The same holds for the RKHS part of the solutions of (4) and (6). Schölkopf und
Smola (2002) describe other support vector machines and give an overview on algorithms
to solve the minimization problems corresponding to SVMs.

Obviously, the proof that many classifiers based on convex loss functions are universally
consistent under weak conditions is a strong argument in favor of these statistical learning
methods. Nevertheless, it is important to investigate robustness properties for such statis-
tical learning methods for the following reasons. In practice one has to apply the methods
to a data set with a finite sample size. Outliers often occur in real data sets. Outliers can
be described as data points which ’are far away . . . from the pattern set by the majority of
the data’, see Hampel et al. (1986, p. 25). There are many reasons for the occurrence of
outliers, e.g. typing errors and gross errors, which are errors due to a source of deviations
which acts only occasionally but is quite powerful. From a robustness point of view the
occurrence of outliers is only one of several possible deviations from the assumed model.
There are often no or virtually no gross errors in high-quality data, but 1% to 10% of gross
errors in routine data seem to be more the rule than the exception, cf. Hampel et al. (1986,
p.27f). Especially in large data mining problems the data quality is sometimes far from
being optimal, cf. Hipp et al. (2001). Obviously, it is not the goal to model the occurrence
of typing errors or gross errors. Goals of robust statistics are to investigate the impact such
data points can have on the results of estimation or testing methods and the development
of methods such that the impact of such data points is bounded. Main strategies of robust
statistics are Huber’s minimax approach (Huber, 1964; Huber, 1981), Hampel’s influence
function (Hampel, 1974; Hampel et al., 1986), the finite sample breakdown point proposed
by Donoho and Huber (1983), Rieder’s approach based on least favourable local alterna-
tives (Rieder, 1994), and the regression depth method proposed by Rousseeuw and Hubert
(1999).

Here, we will use the approach based on the influence function. This approach can be
applied to quite general models and the influence function has a nice interpretation. A
method is called robust in the theory of robust statistics based on influence functions, if the
method is based on a functional with a bounded influence function. From the viewpoint
of robust statistics it is therefore important to investigate the impact a small amount of
contamination of the ’true’ probability measure P can have on the statistical learning pro-
cess which is specified via the functionals defined by Rreg

L,P,λ(.) and Rreg
L,P,λ(., .). Hence, this

paper investigates robustness properties of statistical learning methods based on convex risk
minimization.

The rest of the paper is organized as follows. Section 2 gives the definitions of the
influence function and the sensitivity curve, which are the two robustness concepts we are
dealing with. Section 3 and Section 4 contain the main results. In Section 3 sufficient
conditions are given for the existence of the influence function for classifiers based on (5)
and (6). In Section 4 it is shown that the influence function of the functional in (6) and the
difference quotient used in the definition of the influence function for (5) can be bounded
independently of z and P. Section 5 describes the results of some simulation experiments to
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gain insight into the robustness properties of the SVM for finite sample sizes and investigates
the impact a single data point can have if a radial basis function kernel or a linear kernel is
used. Section 6 contains the conclusion. Finally, the Appendix gives the proofs of the main
theorems discussed in this paper.

2. Influence function and sensitivity curve

Goals of robust statistics are the investigation of robustness properties of statistical methods
and the development of methods with good robustness properties. One major approach of
robust statistics is the influence function of functionals proposed by Hampel (1974) and
Hampel et al. (1986). Here, a map T which assigns to every distribution P on a given
set Z an element T (P) of a given Banach space E is called a functional. In the case of
the convex risk minimization methods (5) and (6) E equals the RKHS and T (P) = fP,λ or
T (P) = (fP,λ, bP,λ), respectively.

Definition 1 Influence function. The influence function of a functional T at a point z for
a distribution P is the special Gâteaux derivative (if existent)

IF (z; T, P) = lim
ε↓0

T
(
(1 − ε)P + εΔz

) − T (P)
ε

, (7)

where Δz is the Dirac distribution at the point z.

The influence function has the interpretation, that it measures the impact of an (infinites-
imal) small amount of contamination of the original distribution P in direction of a Dirac
distribution located in the point z on the theoretical quantity of interest T (P). Therefore,
in the robustness approach based on influence functions it is desirable that a statistical
method is based on a functional with a bounded influence function.

The sensitivity curve SCn proposed by J.W. Tukey (cf. Hampel et al., 1986, p. 93) can
be interpreted as a finite sample version of the influence function (see (9)). The sensitivity
curve measures the impact of just one additional data point z on the empirical quantity of
interest, i.e. on the estimate Tn.

Definition 2 Sensitivity curve. The sensitivity curve of an estimator Tn at a point z given
a data set z1, . . . , zn−1 is defined by

SC n(z; Tn) = n
(
Tn(z1, . . . , zn−1, z) − Tn−1(z1, . . . , zn−1)

)
. (8)

If the estimator Tn is defined via a functional T (Pn), where Pn denotes the empirical
distribution of the data points z1, . . . , zn, then it holds for εn = 1/n:

SC n(z; Tn) =
T

(
(1 − εn)Pn−1 + εnΔz

) − T (Pn−1)
εn

. (9)

For many estimators the sensitivity curve converges to the influence function, as n tends
to infinity. Counterexamples are given e.g. in Davies (1993).
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3. Existence of the influence function

In this section we give sufficient conditions for the existence of the influence function for
classifiers based on (5) and (6). Throughout this section BE denotes the closed unit ball of
a Banach space E. We first recall a simplified version of the implicit function theorem in
Banach spaces (cf. Akerkar, 1999; Zeidler, 1986):

Theorem 3 Let E, F be Banach spaces and G : E×F → F be a continuously differentiable
map. Suppose that we have (x0, y0) ∈ E × F such that G(x0, y0) = 0 and ∂G

∂F (x0, y0) is
invertible. Then there exists a δ > 0 and a continuously differentiable map f : x0 + δBE →
y0 + δBF such that for all x ∈ x0 + δBE, y ∈ y0 + δBF we have

G(x, y) = 0 if and only if y = f(x) .

Moreover, the derivative of f is given by

f ′(x) = −
(

∂G

∂F

(
x, f(x)

))−1 ∂G

∂E

(
x, f(x)

)
.

For the application of the implicit function theorem we have to show that certain operators
are invertible. For this the following theorem which is known as the Fredholm Alternative
(cf. Cheney, 2001) turns out to be helpful:

Theorem 4 Let E be a Banach space and K : E → E be a compact operator. Then idE+K
is surjective if and only if it is injective.

We first establish a result for classifiers based on (5) with smooth loss function:

Theorem 5 Let L : Y × R → [0,∞) be a convex and twice continuously differentiable loss
function. Furthermore, let X ⊂ R

d be compact, H be a RKHS of a continuous kernel on X
and P be a distribution on X × Y . Then the influence function of the classifiers based on
(5) exists for all z ∈ X × Y .

Remark 6 By a simple modification of the proof of the above theorem we actually find that
the special Gâteaux derivative of T : P 
→ fP,λ exists for every direction, i.e.

lim
ε↓0

f(1−ε)P+εP̃,λ − fP,λ

ε

exists for all distributions P and P̃ on X × Y provided that the assumptions of Theorem 5
hold. This is an interesting result from the view of applied statistics, because a point mass
contamination is just one possible kind of contamination which can occur in practice.

The following theorem shows the existence of the influence function for classifiers based
on (6):

Theorem 7 Let L : Y × R → [0,∞) be a convex and twice continuously differentiable loss
function with L′′ > 0. Furthermore, let X ⊂ R

d be compact, H be a RKHS of a continuous
kernel on X and P be a distribution on X×Y . Then the influence function of the classifiers
based on (6) exists for all z ∈ X × Y .

6
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Remark 8 As in the case of problem (5) a slight modification of the proof gives that T :
P 
→ (fP,λ, bP,λ) is special Gâteaux differentiable.

Remark 9 Considering the loss functions in Table 1 we immediately see that the above
theorems apply to the kernel logistic regression, the least squares and the AdaBoost loss
function. The second derivatives of the modified least squares and the modified Huber loss
function fail to exists in only one point. For the loss function of the standard SVM, even
the first derivative does not exist in one point.

4. Bounds on the influence function

As mentioned in Section 2, a desirable property of a robust statistical method is that its
corresponding functional has a bounded influence function. In this section we show that for
certain loss functions the influence function can be bounded independently of z and P for
classifiers based on (5) and (6). For the formulation of our results we need to recall that
the norm of total variation of a signed measure μ on a space X is defined by

‖μ‖M := |μ|(X) := sup
{ n∑

i=1

|μ(Ai)| : A1, . . . , An is a partition of X
}

.

For more information on this norm we refer to Brown and Pearcy (1977).
Our first result bounds the difference quotient in the definition of the influence function for

classifiers based on (5). In particular, it states that the influence function of these classifiers
is uniformly bounded whenever it exists. Please note, that the following theorem based on
Steinwart (2002b) applies to all six loss functions given in Table 1 because differentiability
of L is not assumed. Furthermore, this theorem shows that the sensitivity curves of all six
methods are uniformly bounded if we set ε = 1/n, see (9).

Theorem 10 Let L : Y × R → [0,∞) be a continuous and convex loss function. Further-
more, let X ⊂ R

d be compact and H be a RKHS of a continuous kernel on X. Then for all
λ > 0 there exists a constant cL(λ) > 0 explicitly given in (20) such that for all distributions
P and P̃ on X × Y we have∥∥∥∥∥

f(1−ε)P+εP̃,λ − fP,λ

ε

∥∥∥∥∥
H

≤ cL(λ) ‖P − P̃‖M , ε > 0 .

Unfortunately, using the estimate of Steinwart (2002b) does not give any meaningful
result for classifiers based on (6). Therefore, the approach of the following theorem is to
apply the formula for the derivative given by the implicit function theorem.

Theorem 11 Let L : Y ×R → [0,∞) be a convex and twice continuously differentiable loss
function with a ≤ L′′ ≤ b for some a, b > 0. Furthermore, let X ⊂ R

d be compact, H be a
RKHS of a continuous kernel on X and Tλ(P) = (fP,λ, bP,λ) be given by (6). Then for all
λ > 0 there exists a constant cL(λ) > 0 such that for all distributions P on X × Y and all
z ∈ X × Y we have

‖IF (z; T, P)‖H×R ≤ cL(λ) ‖P − Δz‖M .

7
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Remark 12 Theorem 11 applies to (6) with the least squares loss function. However,
Theorem 11 covers neither the logistic regression function as we only have L′′ ≥ 0 nor the
AdaBoost loss function which satisfies L′′ = L = exp(− .) However, we get the same bound
of the influence function if we restrict our considerations to distributions P with

a ≤
∫

L′′(Y, fP,λ(X) + bP,λ)dP ≤ b (10)

for some b ≥ a > 0. A simple sufficient condition for the latter can be derived by the proof
of Steinwart (2002b, Lemma II.6): let Aρ

y := {x ∈ X : P(y|x) > ρ}, y ∈ Y , ρ > 0, and
αP(ρ) := ρ min{PX(Aρ

1), PX(Aρ
−1)}. Fixing λ > 0, a twice continuously differentiable L and

a threshold α > 0 there exists b ≥ a > 0 such that every P with αP(ρ) ≥ α for some ρ > 0
satisfies (10). Note, that the assumption αP(ρ) ≥ α guarantees that the two classes of P

are “balanced”.

Remark 13 As mentioned in Remark 8 the map T : P 
→ (fP,λ, bP,λ) is special Gâteaux
differentiable. A simple modification of the proof of Theorem 11 shows that the special
Gâteaux derivative of T can be uniformly bounded.

Remark 14 Consider the case that P and P̃ are probability measures with densities p and p̃
with respect to some dominating measure ν. Then, the last two theorems also give bounds of
the influence functions in terms of the Hellinger metric H(P, P̃) = [

∫
(
√

p−√
p̃)2 dν]1/2. This

follows from a relationship between the norm of total variation and the Hellinger metric:

‖P − P̃‖M ≤ 2 H(P, P̃) ≤ 2 ‖P − P̃‖1/2
M .

5. Empirical results for the SVM

In this section we study the impact an additional data point can have on the SVM with
offset b for pattern recognition. An analogous investigation for the case without offset gave
similar results to those described in this section. We generated a training data set with
n = 500 data points xi from a bivariate normal distribution with expectation μ = (0, 0) and
covariance matrix Σ. The variances were set to 1, whereas the covariance was set to 0.5.
The responses yi were generated from a classical logistic regression model with θ = (−1, 1)′,
b = 0.5, such that P (Yi = +1) = [1+exp(−(x′

iθ+b))]−1 and P (Yi = −1) = 1−P (Yi = +1).
The computations were done using the software SVMlight developed by Joachims (1999).
SVMlight solves the dual program corresponding to the primal optimization problem

arg minf∈H, b∈R
1

2Cn ||f ||2H + 1
n

n∑
i=1

ξi

such that yi(f(xi) + b) ≥ 1 − ξi

ξi ≥ 0 .

(11)

We consider two popular kernels: a Gaussian radial basis function (RBF) kernel f(x, x′) =
exp(−γ‖x − x′‖2) and a linear kernel. Appropriate values for γ and for the constant
C (or λ) are important for the SVM and are often determined by cross validation, cf.
Schölkopf and Smola (2002, p. 217). A cross validation based on the leave-one-out er-
ror for the training data set was carried out by a two-dimensional grid search on γ ∈
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Figure 2: Sensitivity function of f̂ + b̂, if the additional data point z is located at z = (x, y),
where x = (6, 6) and y = 1. Left: RBF kernel. Right: linear kernel.

{0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, 10, 20} and C ∈ {0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 5, 10,
20}. As a result of the cross validation, the tuning parameters for the SVM with RBF
kernel were set to γ = 0.25 and C = 2. The leave-one-out error for the SVM with a linear
kernel turned out to be stable over a broad range of values for C. We used C = 1 in the
computations for the linear kernel. For n = 500 this results in λ = (2Cn)−1 = 5 × 10−4

for the RFB kernel and λ = (2Cn)−1 = 0.001 for the linear kernel. Please note, that such
small values of λ will result in relatively large bounds.

Figure 2 shows the sensitivity curves of f̂ + b̂ := f̂n,λ+ b̂, if we add a single point z = (x, y)
to the original data set, where x1 = 6, x2 = 6, and y = +1. The additional data point has
a local and smooth impact on f̂ + b̂ with a peak in a neighorhood of (x1, x2), if one uses
the RBF kernel. For a linear kernel, the impact is approximately linear. The reason for
this different behavior of the SVM with different kernels becomes clear from Figure 3 where
plots of f̂ + b̂ are given for the original data set and for the modified data set, which contains
the additional data point z. Please note, that the RBF kernel yields f̂ + b̂ approximately
equal to zero outside a central region, as almost all data points are lying inside the central
region. Comparing the plots of f̂ + b̂ based on the RBF kernel for the modified data set with
the corresponding plot for the original data set, it is obvious that the additional smooth
peak is due to the new data point located at x = (6, 6) with y = 1. It is interesting to note,
that although the estimated functions f̂ + b̂ for the original data set and for the modified
data set based on the SVM with the linear kernel are looking quite similar, the sensitivity
curve is similar to an affine hyperplane which is affected by the value of z. This allows the
interpretation, that just a single data point can have an impact on f̂ + b̂ estimated by a
SVM with a linear kernel over a broader region than for an SVM with an RBF kernel.

Now, we study the impact of an additional data point z = (x, y), where y = 1, on the
percent of classification errors and on the fitted y−value for z. We vary z over a grid in the
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Figure 3: Plot of f̂ + b̂. Upper left: RBF kernel, original data set. Upper right: linear
kernel, original data set. Lower left: RFB kernel, modified data set. Lower right:
linear kernel, modified data set. The modified data set contains the additional
data point z = (x, y), where x = (6, 6) and y = 1.

x−coordinates. Figure 4 shows that the percentage of classification errors is approximately
constant outside the central region that contains almost all data points if a Gaussian RBF
kernel was used. For the SVM with a linear kernel, the percentage of classification errors
tends to be approximately constant in one halfspace but changes in the other halfspace. The
response of the additional data point was correctly estimated by ŷ = +1 outside the central
region, if a RBF kernel is used, see Figure 5. In contrast to that, using a linear kernel results
in estimated responses ŷ = +1 or ŷ = −1 of the additional data point depending on the
affine halfspace in which the x−value of z is lying. Finally, let us study the impact of an
additional data point located at z = (x, y), where y = 1, on the estimated parameters b̂ and
θ̂, see Figure 6. We vary z over a grid in the x−coordinates in the same manner as before.
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Figure 4: Percent of classification errors if one data point z = (x, 1) is added to the original
data set, where x varies over the grid. Left: RBF kernel. Right: linear kernel
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Figure 5: Fitted y−value for new observation if one data point z = (x, 1) is added to the
original data set, where x varies over the grid. Left: RBF kernel. Right: linear
kernel

As the plots for θ̂1 and θ̂2 are looking very similar, we only show the latter. Please note,
that the axes are not identically in Figure 6 due to the kernels. The sensitivity curves for
the slopes estimated by the SVM with an RBF kernel are similar to a hyperplane outside
the central region, which contains almost all data points. In the central region, there is
a smooth transition between regions with higher sensitivity values and regions with lower
sensitivity values. The sensitivity curves for the slopes of the SVM with a linear kernel are
flat in one affine halfspace, but change approximately linear in the other affine halfspace.
This behavior also occurs for the sensitivity curve of the offset by using a linear kernel.
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Figure 6: Sensitivity function for θ̂ and b̂, respectively. Upper left: Sensitivity function for
θ̂2, RBF kernel. Upper right: Sensitivity function for θ̂2, linear kernel. Lower
left: Sensitivity function for b̂, RBF kernel. Lower right: Sensitivity function for
b̂, linear kernel.

In contrast to that, the sensitivity curve of the offset based on a SVM with a RBF kernel
shows a smooth but curved shape outside the region containing the majority of the data
points.

6. Concluding remarks

In this paper, we used the influence function approach of robust statistics (Hampel et al.,
1986) for recent statistical learning methods based on convex risk minimization methods for
the problem of pattern recognition. Special cases of such convex risk minimization methods
are the support vector machine, kernel logistic regression, AdaBoost, and least squares.
Assumptions were derived for the existence of the influence function of the classifiers and also

12
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for bounds of the influence function which hold uniformally with respect to the distribution
P and the point z of the Dirac distribution Δz describing the contamination. For the case
without offset b one can uniformly bound the difference quotient considered by the influence
function under weak conditions which also yields uniform bounds for Tukey’s sensitivity
curve. In particular, the influence function for these classifiers is uniformly bounded if it
exists. Some of the results are not limited to the special Gâteaux derivative used in the
definition of the influence function. The assumptions of some of our results exclude the
support vector machine because the SVM uses a loss function which is not differentiable
in one point. Hence, we gave some numerical results for the sensitivity curve, which can
be interpreted as a final sample version of the influence function, of the SVM classifier. It
turned out, that the popular exponential radial basis function kernel resulted in smooth
sensitivity curves for f̂ + b̂ and for the estimated coefficients (θ̂, b̂). Varying the position
of one additional data point had a smooth and local impact on f̂ + b̂, if one uses an RBF
kernel. For the linear kernel the impact of varying one additional data point behaves also
in a relatively smooth manner, but the impact seems to be more globally than locally.

We briefly like to mention that the sensitivity curves for the slope parameters of a support
vector machine with a RBF kernel k(x, x′) = exp(−γ‖x− x′‖2) are looking quite similar to
rotated sensitivity curves or to influence functions of robust S-estimators based on a smooth
ρ−function in the linear regression model. This might be a consequence of a relationship be-
tween the SVM using a RBF kernel and robust S-estimators based on a smooth ρ−function
fulfilling the usual properties (cf. Davies, 1990): (a) ρ(u) = ρ(−u), u ∈ R, (b) ρ(u), u > 0, is
nonincreasing, continuous at 0 and continuous on the left, and (c) for some c > 0, ρ(u) > 0
if |u| ≤ c, and ρ(u) = 0 if |u| > c, which is true e.g. for ρc(u) =

(
1 − u2/c2

)2, if |u| <= c,
ρc(u) = 0 else. The RBF kernel k of a SVM considered as a function of u = ‖x − x′‖ has
similar properties than the ρ−function used by S-estimators. Consider the linear regression
model yi = x′

iθ + εi, 1 ≤ i ≤ n, where yi ∈ R, xi ∈ R
p, and θ ∈ R

p. Further, assume εi,
1 ≤ i ≤ n, are independently and identically distributed random variables with respect to
some distribution P such that P(εi ≤ u) = F (u/σ), u ∈ R, where σ ∈ (0,∞) is a scale
parameter and F : R → [0, 1] is a nondegenerate distribution function. An S-estimate (θ̂, σ̂)
of (θ, σ) is implicitly defined by minimizing a scale parameter σ subject to an inequality
constraint, i.e.

arg minθ∈Rp, σ∈(0,∞) σ (12)

s.t. 1
n

∑n
i=1 ρ

(
yi−x′

iθ
σ

)
≥ 1 − ε, (13)

cf. Rousseeuw and Yohai (1984) and Davies (1990). The constraint guarantees that at
least n(1 − ε) of the residuals (yi − x′

iθ)/σ have absolute values less than of equal to c due
to property (c) of the ρ−function. Formula (11) allows the interpretation that the SVM
minimizes an average plus a regularized squared norm (and hence a measure for variability)
with respect to several inequality constraints.

For a numerical comparison between the support vector machine and the regression depth
method recently proposed by Rousseeuw and Hubert (1999) see Christmann and Rousseeuw
(2001) and Christmann, Fischer and Joachims (2002).

It would be interesting to study the influence function of convex risk minimization meth-
ods for other problems, e.g. ε−regression or kernel principal component analysis, or to con-
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sider other robustness concepts proposed by Huber (1981) and Donoho and Huber (1983),
but this is beyond the scope of this paper.
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Appendix A.

In this appendix we prove the theorems from Section 3 and Section 4.

Proof of Theorem 5. Let Φ : X → H be the feature map of H, i.e. Φ(x) := k(x, .),
where k is the kernel of H. Let us consider the map G : R × H → H that is defined by

G(ε, f) := 2λf + E(1−ε)P+εΔz
L′(Y, f(X))Φ(X) .

Note, that the above expectation is actually a Bochner integral in H. Furthermore, for
ε 	∈ [0, 1] the expectation is with respect to a signed measure. Obviously, for ε ∈ [0, 1] we
obtain

G(ε, f) =
∂Rreg

L,(1−ε)P+εΔz ,λ

∂H
(f) .

Since Rreg
L,(1−ε)P+εΔz ,λ is convex for all ε ∈ [0, 1] we have G(ε, f) = 0 if and only if f =

f(1−ε)P+εΔz ,λ for such ε. Our aim is to show the existence of a differentiable function
ε 
→ fε defined on a small interval [−δ, δ] for some δ > 0 that satisfies G(ε, fε) = 0 for all
ε ∈ [−δ, δ]. Once we have shown the existence of this function we immediately obtain

IF (z; T, P) =
∂fε

∂ε
(0) .

For the existence of ε 
→ fε we only have to check by Theorem 3 that G is continuously differ-
entiable and that ∂G

∂H (0, fP,λ) is invertible. Let us start with the first: an easy computation
shows

∂G

∂ε
(ε, f) = −EPL′(Y, f(X))Φ(X) + EΔzL

′(Y, f(X))Φ(X) . (14)

Moreover, using the reproducing property 〈Φ(x), g〉 = g(x), g ∈ H, x ∈ X we find

∂G

∂H
(ε, f) = 2λ idH + E(1−ε)P+εΔz

L′′(Y, f(X))〈Φ(X), .〉Φ(X) . (15)

It is a simple routine to check that both partial derivatives are continuous. This together
with the continuity of G ensures that G is continuously differentiable (cf. Akerkar, 1999).
In order to show that ∂G

∂H (0, fP,λ) is invertible it suffices to show by the Fredholm Alternative
that ∂G

∂H (0, fP,λ) is injective and that

Ag := EPL′′(Y, fP,λ(X))g(X)Φ(X) , g ∈ H,

14
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defines a compact operator on H. To show the compactness recall that Φ(X) is compact
by the continuity of Φ. Therefore, there exists a c > 0 such that

Ag ∈ c · aco Φ(X)

for all g ∈ BH . Since the closure of the absolute convex hull aco Φ(X) is compact the
desired compactness of the operator A follows. Furthermore, for g 	= 0 we find

〈
(2λ idH + A)g, (2λ idH + A)g

〉
= 4λ2〈g, g〉 + 4λ〈g, Ag〉 + 〈Ag, Ag〉
>

〈
g, EPL′′(Y, fP,λ(X))g(X)Φ(X)

〉
= EPL′′(Y, fP,λ(X))g2(X)
≥ 0

since the second derivative of a convex function is always nonnegative. Therefore, ∂G
∂H (0, fP,λ) =

2λ idH + A is injective.

Proof of Theorem 7. We sometimes write L(f + b) instead of L(Y, f(X) + b) to
shorten the notation, if misunderstandings are unlikely. We use this kind of notation also
for derivatives of L. The proof is similar to that of Theorem 5. However, due to the extra
variable b we have to modify our approach: we define the map G : R×H ×R → H ×R by

G(ε, f, b) :=
(
2λf + E(1−ε)P+εΔz

L′(f + b)Φ, E(1−ε)P+εΔz
L′(f + b)

)
.

Again, for ε ∈ [0, 1] the definition of G ensures

G(ε, f, b) =
∂Rreg

L,(1−ε)P+εΔz ,λ

∂(H × R)
(f) ,

if we apply the identification (H × R)′ = H × R. Since Rreg
L,(1−ε)P+εΔz ,λ is convex for all

ε ∈ [0, 1] we have G(ε, f, b) = 0 if and only if (f, b) minimizes Rreg
L,(1−ε)P+εΔz ,λ for such ε. Our

aim is to apply the implicit function theorem in the way we did it in the proof of Theorem
5. However, this time the implicit function theorem will also ensure the uniqueness of the
solution of (6). Obviously, this is necessary for the existence of the influence function. In
order to apply Theorem 3 we need the partial derivatives of G. By an easy computation we
find

∂G

∂ε
(ε, f, b) = −EPL′(Y, f(X) + b)Φ(X) + EΔzL

′(Y, f(X) + b)Φ(X)

and
∂G

∂(H × R)
(ε, f, b) =

(
2λ idH + E εL

′′(f + b)〈Φ, .〉Φ E εL
′′(f + b)Φ

E εL
′′(f + b)Φ E εL

′′(f + b)

)
,

where we use the abbreviation E ε := E(1−ε)P+εΔz
. A routine check shows that both G and

the partial derivatives are continuous and hence G is continuously differentiable.
Now, let us fix a solution (fP,λ, bP,λ) of (6). Existence of a solution follows from Zhang
(2001), Steinwart (2002b), and Steinwart (2003). In order to show that the operator
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∂G
∂(H×R)(0, fP,λ, bP,λ) is invertible it suffices to show by the Fredholm Alternative that

∂G
∂(H×R)(0, fP,λ, bP,λ) is injective and that

K :=
(

EPL′′(fP,λ + bP,λ)〈Φ, .〉Φ EPL′′(fP,λ + bP,λ)Φ
EPL′′(fP,λ + bP,λ)Φ EPL′′(fP,λ + bP,λ) − 2λ

)
,

is a compact operator on H × R. The latter can be seen using the argument of the proof
of Theorem 5. For the former let us suppose that we have an element (g, t) ∈ H × R with
(2λidH×R + K)(g, t) = 0. This is equivalent to the following linear system of equations

2λg + EPL′′(fP,λ + bP,λ)g Φ + t EPL′′(fP,λ + bP,λ)Φ = 0 (16)
EPL′′(fP,λ + bP,λ)g + t EPL′′(fP,λ + bP,λ) = 0 . (17)

Let us first assume that t = 0. Then the above system yields

2λg + EPL′′(fP,λ + bP,λ)gΦ = 0 .

Using the techniques of the proof of Theorem 5 we easily find that this implies g = 0.
Therefore, we may assume without loss of generality that t = 1. In order to avoid long
notations we introduce the measure μ := L′′(fP,λ + bP,λ)dP. Note, that L′′ > 0 implies
μ 	= 0. Now, (17) yields

μ(g) = −μ(1) , (18)

where 1 denotes the constant function with value 1. Hence, by (16) we find

0 = 2λ〈g, g〉 + μ(g2) + μ(g) = 2λ〈g, g〉 + μ(g2) − μ(1) . (19)

Furthermore, (18) implies

0 ≤ μ((g + 1)2) = μ(g2) + 2μ(g) + μ(1) = μ(g2) − μ(1) .

This together with (19) yields 2λ〈g, g〉 ≤ 0 and hence g = 0. However, the latter contradicts
(18) and hence there is no non-trivial solution of the system (16), (17).
Now, the implicit function theorem states in particular, that the solution (fP,λ, bP,λ) is
unique in a small neighborhood of (fP,λ, bP,λ). Hence it is globally unique since the set of
solutions of (6) is convex. The rest of the proof follows the ideas of the proof of Theorem 5.

Proof of Theorem 10. Recall that every convex function on R is locally Lipschitz
continuous. Let |L|Y ×[−c,c]|1 denote the Lipschitz constant of L restricted to Y × [−c, c],
c > 0. We define δλ :=

√
(L(−1, 0) + L(1, 0))/λ and K := supx∈X

√
k(x, x). We fix a

distribution P. An easy estimate (cf. Steinwart, 2002b) shows ‖fP,λ‖∞ ≤ δλK. Now, by
Theorem 3.15 in Steinwart (2003) there exists a measurable function h : X × Y → R with
‖h‖∞ ≤ ∣∣L|Y ×[−δλK,δλK]

∣∣
1

such that for all distributions P̂ we have

‖fP,λ − f
P̂,λ‖H ≤ 1

λ

∥∥EPhΦ − E
P̂
hΦ

∥∥
H

,
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where Φ : X → H is the feature map of H. Now let P̂ := (1 − ε)P + εP̃. Then the above
inequality yields

ε−1 ‖f(1−ε)P+εP̃,λ − fP,λ‖H ≤ (ελ)−1 ‖EPhΦ − E(1−ε)P+εP̃
hΦ‖

H

= λ−1 ‖EPhΦ − E
P̃
hΦ‖H

≤ cL(λ) ‖P − P̃‖M ,

where
cL(λ) = λ−1 K

∣∣L|Y ×[−δλK,δλK]

∣∣
1
. (20)

This shows the assertion.

Proof of Theorem 11. By rescaling problem (6) we may assume without loss of
generality that K := supx∈X

√
k(x, x) ≤ 1. Recall, that in the proof of Theorem 7 we used

IF (z; T, P) =
∂(fε, bε)

∂ε
(0) ,

where ε 
→ (fε, bε) was the function implicitly defined by G(ε, f, b) = 0. The implicit
function theorem hence gives

IF (z; T, P) = −S−1 ◦ ∂G

∂ε
(0, fP,λ, bP,λ) , (21)

where S := ∂G
∂(H×R)(0, fP,λ, bP,λ). Therefore, it suffices to bound the norms of the operators

on the right side of (21). We begin with∥∥∥∥∂G

∂ε
(0, fP,λ, bP,λ)

∥∥∥∥ = ‖EPL′(fP,λ + bP,λ)Φ − EΔzL
′(fP,λ + bP,λ)Φ‖

≤ b ‖P − Δz‖M .

Furthermore, for (g, t) ∈ H × R we have

S(g, t) =
(

2λ idH + EPL′′(fP,λ + bP,λ)〈Φ, .〉Φ EPL′′(fP,λ + bP,λ)Φ
EPL′′(fP,λ + bP,λ)Φ EPL′′(fP,λ + bP,λ)

)(
g
t

)

=
(

2λg + EPL′′(fP,λ + bP,λ)gΦ + tEPL′′(fP,λ + bP,λ)Φ
EPL′′(fP,λ + bP,λ)g + tEPL′′(fP,λ + bP,λ)

)
.

As in the proof of Theorem 7 we write μ := L′′(fP,λ + bP,λ)dP. Then we find

〈S(g, t), (g, t)〉 = 2λ〈g, g〉 + μ(g2) + 2tμ(g) + t2μ(1) . (22)

Let us suppose that ‖(g, t)‖ = 1. Then there exist w ∈ H with ‖w‖ = 1 and s ∈ [0, 1] such
that g = sw and t = ±√

1 − s2. Note, that since K ≤ 1 we have |μ(w)| ≤ μ(1). Therefore,
(22) yields

〈S(g, t), (g, t)〉 ≥ 2λs2 − 2s
√

1 − s2μ(1) + (1 − s2)μ(1)
≥ 2λs2 − 2s(1 − s)μ(1) + (1 − s2)μ(1)
= 2λs2 + s2μ(1) − 2sμ(1) + μ(1)

≥ λμ(1)
2λ + μ(1)

,

17



Christmann and Steinwart

where the last estimate is based on a simple minimization with respect to s. By the proof
of Pedersen (1989, Prop. 3.2.12) we hence find

‖S(g, t)‖ ≥ λμ(1)
2λ + μ(1)

‖(g, t)‖

for all (g, t) ∈ H × R. Hence we obtain

‖S−1‖ ≤
(

λμ(1)
2λ + μ(1)

)−1

=
1
λ

+
2

μ(1)
.

Since L′′ ≥ a implies μ(1) ≥ a > 0 we have shown the assertion.
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