EconStor >
Ludwig-Maximilians-Universität München (LMU) >
Sonderforschungsbereich 386: Statistische Analyse diskreter Strukturen, Universität München (LMU) >
Discussion papers, SFB 386, LMU München >

Please use this identifier to cite or link to this item:

Full metadata record

DC FieldValueLanguage
dc.contributor.authorHelms, Florianen_US
dc.contributor.authorCzado, Claudiaen_US
dc.contributor.authorGschlößl, Susanneen_US
dc.description.abstractIn this paper we model the life-history of LTC patients using a Markovian multi-state model in order to calculate premiums for a given LTC-plan. Instead of estimating the transition intensities in this model we use the approach suggested by Andersen et al. (2003) for a direct estimation of the transition probabilities. Based on the Aalen-Johansen estimator, an almost unbiased estimator for the transition matrix of a Markovian multi-state model, we calculate so-called pseudo-values, known from Jackknife methods. Further, we assume that the relationship between these pseudo-values and the covariates of our data are given by a GLM with the logit as link-function. Since the GLMs do not allow for correlation between successive observations we use instead the Generalized Estimating Equations (GEEs) to estimate the parameters of our regression model. The approach is illustrated using a representative sample from a German LTC portfolio.en_US
dc.publisherTechn. Univ.; Sonderforschungsbereich 386, Statistische Analyse Diskreter Strukturen Münchenen_US
dc.relation.ispartofseriesDiscussion paper // Sonderforschungsbereich 386 der Ludwig-Maximilians-Universität München 393en_US
dc.subject.keywordMarkovian Multi-State Modelen_US
dc.subject.keywordTransition Probabilitiesen_US
dc.subject.keywordAalen-Johansen Estimatoren_US
dc.titleCalculation of LTC Premiums based on direct estimates of transition probabilitiesen_US
dc.typeWorking Paperen_US
Appears in Collections:Discussion papers, SFB 386, LMU München

Files in This Item:
File Description SizeFormat
484035649.PDF238.62 kBAdobe PDF
paper393.ps516.37 kBPostscript
No. of Downloads: Counter Stats
Show simple item record
Download bibliographical data as: BibTeX

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.