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Calculation of LTC Premiums based on direct
estimates of transition probabilities

Florian Helms∗, Claudia Czado†and Susanne Gschlößl‡

Technische Universität München, Zentrum Mathematik

Abstract

In this paper we model the life-history of LTC patients using a Markovian multi-state
model in order to calculate premiums for a given LTC-plan. Instead of estimating
the transition intensities in this model we use the approach suggested by Ander-
sen et al. (2003) for a direct estimation of the transition probabilities. Based on
the Aalen-Johansen estimator, an almost unbiased estimator for the transition ma-
trix of a Markovian multi-state model, we calculate so-called pseudo-values, known
from Jackknife methods. Further, we assume that the relationship between these
pseudo-values and the covariates of our data are given by a GLM with the logit
as link-function. Since the GLMs do not allow for correlation between successive
observations we use instead the ”Generalized Estimating Equations” (GEEs) to es-
timate the parameters of our regression model. The approach is illustrated using a
representative sample from a German LTC portfolio.

Keywords: Markovian Multi-State Model, Transition Probabilities, Aalen-Johansen
Estimator, Pseudo-Values, GLM, GEE, LTC, Premium,

1 Introduction

The problem on how to incorporate increasing life expectancy in social welfare
systems has become more urgent during the last decades. When looking for
example at pension and health care systems in most industrialized countries
it seems obvious that necessary adjustments have not been made. In partic-
ular the compressed morbidity hypothesis confronts the expanded morbidity
hypothesis. The first one claims that increasing life expectancy is due to a
decreasing morbidity at all ages, whereas the latter states that gained years of
life expectancy are entirely spent in illness. Reality is probably somewhere in
between. But not only newborn children have a higher life expectancy today,
also the life expectancy of older people has been increased. The numbers from
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1 INTRODUCTION 2

the Federal Statistical Office in Germany from the ”Abbreviated Mortality
Table for 1999/2001” show that a 60-year old male can still expect to live for
another 19.5 years, a female of the same age for another 23.7 years.

In addition to this higher life expectancy the so often quoted demographic
development changes the life of older people, as well (see CoE (2003)). As a
result of a more individualized society and a different family structure people
tend to live more frequently alone. For example at older age they might require
some kind of external assistance to manage the tasks of daily life. To pay for
this external assistance, in most industrialized countries some kind of long
term care insurance (LTCI) was established and added to the social welfare
system. Insurance companies also have developed full or additional insurance
cover for long term care (LTC).

In Germany compulsory LTCI was introduced in 1995. The leading idea was,
that ”LTCI follows health insurance”. The main difference between LTCI and
health insurance is the duration of the period care is needed. According to
German law (see §14 of the 11th Sozialgesetzbuch), LTC-beneficiaries are ”per-
sons, who on account of a physical, mental or psychic illness or disability are
in considerable or even more serious need of care for usual and regular recur-
ring activities of daily living on a continuing base, presumably for at least six
months.”

In 1995, persons in the public health insurance system were given insurance
coverage through the compulsory LTCI-system, paying 1.7% of their income.
Persons with private health insurance were also insured in a private LTCI-
system without any underwriting, paying premiums according to actuarial
rates. In both LTCI-systems the same benefits are paid. However insurance
companies also offer additional coverage for public or private insured. As a
consequence of the change in the social welfare laws private insurance compa-
nies had to take over a large claim portfolio right at the start of the compulsory
LTCI.

We used for our analysis a representative random sample of such a portfolio
from the private compulsory LTCI-system. In general the benefits depend on
the place of care and on the level of care measuring the severeness of assistance
needed. External assistance might be provided at home or in a nursing home.
The severeness of assistance needed is expressed in terms of level of care:
People in ”Level 1” are in considerable need of care, people in ”Level 2” in
serious need of care and in ”Level 3” in extreme need of care.

The above situation of different levels and places of care can be modeled by a
three-state Markovian model, with states ”Care at home”, ”Care in a nursing
home” and ”Death”. Different lives are observed over time and their transi-
tions between these states are recorded. The transition between different states
can be expressed in terms of transition probabilities, that is the probability
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that a person with age z lives in state g at time t and transfers to state h
within the next year. A representation of the transitions in terms of transi-
tion intensities is also possible and used in Cox’s proportional hazard-model
(see Czado and Rudolph (2002)) under the competing risk assumption (see
Andersen et al. (2001)). Other approaches, for example Levikson and Mizrahi
(1994) determine transition probabilities in a Markovian multi-state model,
that depend on age and health-status of the beneficiaries, whereas Jones and
Willmot (1993) assume that people become LTC-patients according to a non-
homogeneous Poisson processes and transition probabilities between different
levels of care are fixed and known. This leads to a distribution function of the
number of lives requiring care at a certain level at an arbitrary future time.

For actuarial purposes transition probabilities are needed. In the case of Cox’s
proportional hazard-model the transition probabilities are calculated from the
transition intensities, that have to sum up to zero over the different states,
using a relationship given by the set of Kolmogorov forward differential equa-
tions (see Haberman and Pitacco (1999)). Thus the transition probabilities
are complex non-linear functions of the intensity regression coefficients.

In this context Andersen et al. (2003) developed a method that models the
transition probabilities directly. This method calculates pseudo-values based
on the Aalen-Johansen estimator, an almost unbiased estimator of the tran-
sition matrix of an Markovian multi-state model. These pseudo-values are
then used in Generalized Estimating Equations (GEEs), that take, in contrast
to Maximum Likelihood Estimation correlation between observations into ac-
count, to estimate the parameters of the model.

The goal of this paper is to introduce the approach of Andersen et al. (2003)
to actuarial scientists and to demonstrate that this method can be successfully
implemented for calculating LTC premiums. For this we provide a complete
description of all statistical and actuarial tools necessary and illustrate its
application to a representative random sample from the German private com-
pulsory LTCI-system by deriving the necessary transition probabilities in order
to calculate insurance premiums required for a given LTC-plan.

The paper is organized as follows: In Section 2 we introduce an appropriate
insurance model and show how LTC-premiums are calculated in this model
using actuarial values. To obtain these actuarial values we need to estimate
the transition probabilities from our data. Thus we define in Section 3 the
Aalen-Johansen estimator, a non-parametric and almost unbiased estimator
of the transition matrix of a Markovian multi-state model.

Since the Aalen-Johansen estimator does not allow for covariates such as sex
and age of claimants and only generates one outcome for a given set of data,
we need pseudo-values to generate data required for a regression analysis and
to construct a relationship between the Aalen-Johansen estimator and covari-
ates associated with the observations. Therefore we introduce pseudo-values
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in Section 4 and explain their use in generalized linear models (GLMs), which
are popular extensions of linear models. They are discussed for example in Mc-
Cullagh and Nelder (1989) and Fahrmeir and Tutz (1994). The pseudo-values
are calculated at different points in time involving the same observations.
Therefore the assumption of independence required for GLMs does no longer
hold and we have to introduce the generalized estimating equations (GEEs)
in Section 5 that take correlation between observations into account.

In Section 6 we apply the methods discussed to the LTCI data set: We calcu-
late the Aalen-Johansen estimator of a three-state model, derive the pseudo-
values and thus generate the data for a regression analysis using GEEs, where
we specify the logit as link function in a linear model. With the estimates
obtained from this regression analysis we calculate finally the one-year tran-
sition probabilities of our insurance model. These transition probabilities are
then used to calculate the actuarial values for a given LTC-plan and derive
the necessary premiums. A summary with a comparison of our premiums with
premiums offered by a German health insurer completes our analysis.

2 Markovian Multi-State Insurance Models

We use a Markovian three-state model with states corresponding to the places
of care according to the German compulsory LTCI-system, that is with states
”Care at home”, ”Care in a nursing home” and ”Death” given in Figure 1:

(1): Care at home
�p12(t)

�

p13(t)

(2): Care in a nursing home

(3): Death

�
�

�
�

�
��

�
�

�
�

�
��

p21(t)

p23(t)

Figure 1: Markovian three-state model for LTC

The quantity pgh(t) denotes the one-year transition probability for a transition
from state g to state h. We excluded transitions from state 2 to 1, consequently
p21(t) := 0 for all t since a transition from state 2 to 1 was observed very rarely,
and we consider state 3 as an absorbing state for natural reasons. Thus p31(t)
and p32(t) are zero, as well.
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This three-state model only accounts for individuals that already qualified for
one of the three levels of care. If we extend our model to the situation of an
insurance company, we have to add the state ”Active” to our model. In Figure
2 we added this state. For the area within the dotted line we were able to
calculate the necessary transition probabilities using our data.

For transition probabilities from outside this area additional information is
necessary, such as incidence rates for LTC and mortality rates for active lives,
to derive all transition probabilities that are needed to calculate actuarial
values and thus the premiums required for a given LTC-plan. For this we used
incidence rates from ”Custodial Insurance, Japan” and mortality rates from
the ”Bavarian life tables 1986-1988” (see e.g. Rudolph (2000) Appendix C.1
and C.2). Note that we excluded transitions from state 2 to 1 and from state 1
and 2 to state 0 since such transitions occurred very rarely and also transitions
out of state 3 for obvious reasons.

(0): Active � (3): Death

(2): Care in a nursing home(1): Care at home �

�

�	
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�
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�
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�
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Figure 2: Markovian four-state Model for LTCI

We use the extended Markovian four-state model given in Figure 2 as the
insurance model in which premiums will be calculated. Thus the life-history
of an individual will be described by a time-continuous Markov process S(t)
with state space S = 0, 1, 2, 3.

The transition probability of this time-continuous Markov process S(t) is de-
fined for all 0 ≤ t ≤ u and g, h ∈ S as

pgh(t, u) := P (S(u) = h|S(t) = g).
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The corresponding transition intensity is given by

λgh(t) := lim
dt→0

pgh(t, t + dt)

dt
.

Further we define the one-year transition probability as

pgh(t) := pgh(t, t + 1).

In a time-discrete model one can use these one-year transition probabilities to
calculate any transition probability pgh(t, u). Haberman and Pitacco (1999)
showed this using a special case of the Chapman-Kolmogorov equations:

pgh(t, u) =
∑
k∈S

pgk(t, t + 1) · pkh(t + 1, u)

From an insurance point of view one distinguishes between inflows (e.g the pre-
miums paid by the insured) and outflows (e.g. annuity benefits or lump sums
paid by the insurer). Generally the following types of premiums and benefits
are possible. Further details and examples can also be found in Haberman and
Pitacco (1999):

• a continuous premium at a rate pg(t) at time t, if S(t) = g;

• a continuous annuity benefit at rate bh(t) at time t, if S(t) = h;

• a lump sum cgh(t), if at time t a transition occurs from state g to state
h;

We denote by pg(t)dt the premium amount and by bh(t)dt the benefit amount
paid out in the infinitesimal interval [t, t + dt), respectively.

Since these cash-flows occur at different points in time we use the concept of
random present values to compare inflows with outflows, that is we deflate
inflows and outflows to the present time using the factor v = exp{ −δ} from
the compound interest model, where the force of interest δ is assumed to be
deterministic and constant.

Consider a continuous premium at rate ph(u) at time u, if S(u) = h. As al-
ready mentioned, ph(u)du is the premium amount paid out in the infinitesimal
interval [u, u + du). The random present value of this premium at time t is
given by

Y ph
t (u, u + du) := vu−tI{S(u)=h}ph(u)du.

The same continuous premium paid over the time interval [u1, u2), with t ≤
u1 < u2, has the following random present value at time t:

Y ph
t (u1, u2) :=

∫ u2

u1

vu−tI{S(u)=h}ph(u)du.
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Consider a continuous annuity benefit at a rate bh(u) at time u, if S(u) = h.
Again, bh(u)du is the benefit amount paid out over the infinitesimal interval
[u, u + du). The random present value of this benefit at time t is given by

Y bh
t (u, u + du) := vu−tI{S(u)=h}bh(u)du.

The same continuous annuity benefit on the time interval [u1, u2), with t ≤
u1 < u2, has the following random present value at time t:

Y bh
t (u1, u2) :=

∫ u2

u1

vu−tI{S(u)=h}bh(u)du.

Consider a lump sum chk(u), paid just after time u, if a transition from state
h to k occurs at time u. The random present value of this lump sum at time
t is given by

Y chk
t (u) := vu−tI{S(u−)=h, S(u)=k}chk(u).

In the following these random present values will be used to calculate the
actuarial values, which are the basic tool to determine premiums and reserves
in actuarial sciences.

Actuarial values are expected present values. In addition to the financial struc-
ture of random present values we need now a probabilistic structure, as well.
Thus we use at this point the assumption that the life-history can be modeled
as a time-continuous Markov chain. Further we suppose that the risk is in
state g at time t, that is S(t) = g, and define the actuarial values as a con-
ditioning event. Actuarial values are therefore conditional expected present
values. Following Czado and Rudolph (2002) we define:

Definition 2.1 (Actuarial values) Actuarial values are expected present val-
ues. Assuming that the insured risk is in state g at time t, then the actuarial
values are given as conditional expectations of the random present values, that
is

• E[Yt(u)|S(t) = g] for lump sum payments

• E[Yt(u, u + du)|S(t) = g] for annuities

In the following we are going to specify the actuarial values for the random
present values introduced earlier:

The actuarial value of the continuous premium at rate ph(u) at time u, if
S(u) = h, is

E [Y ph
t (u, u + du)|S(t) = g] = vu−tpgh(t, u)ph(u)du.

Further we define for u1 < u2
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E [Y ph
t (u1, u2)|S(t) = g] =

∫ u2

u1

vu−tpgh(t, u)ph(u)du.

In the interval [t, n] we have the following cumulative premium function de-
noted by Pi(t, n):

Pg(t, n) =

∫ n

t

vu−t
∑
h∈S

pgh(t, u)ph(u)du.

The actuarial value of the continuous annuity benefit at rate bh(u) at time u,
if S(u) = h, is

E
[
Y bh

t (u, u + du)
∣∣∣S(t) = g

]
= vu−tpgh(t, u)bh(u)du

and for u1 < u2 we define

E
[
Y bh

t (u1, u2)
∣∣∣S(t) = g

]
=

∫ u2

u1

vu−tpgh(t, u)bh(u)du.

The actuarial value of a lump sum chk paid just after time u, if a transition
from state h to k occurs at time u, is

E [Y chk
t (u)|S(t) = g] = vu−tpgh(t, u)λhk(u)chk(u)

and correspondingly for u1 < u2

E [Y chk
t (u1, u2)|S(t) = g] =

∫ u2

u1

vu−tpgh(t, u)λhkchk(u)du.

Taking all the benefits defined above together we obtain the cumulative benefit
function Bg(t, n), that is

Bg(t, n) =

∫ n

t

vu−t
∑
h∈S

pgh(t, u)bh(u)du

+

∫ n

t

vu−t
∑
h∈S

∑
k:k �=h

pgh(t, u)λhk(u)chk(u)du.

The principle of equivalence states, as mentioned by Czado and Rudolph
(2002), that the expected amount of premiums has to be equal to the ex-
pected amount of benefits. This means that at the time when the policy is
issued, the actuarial value of the benefits, that are paid under this contract,
has to be the same as the actuarial value of the premiums, that are received
by the insurer:
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Definition 2.2 (The Principle of Equivalence) For an insured risk with
policy end at n and initial state S(0) = 0, the equivalence principle is satisfied
if and only if

P0(0, n) = B0(0, n)

Clearly this relationship might be satisfied by an infinity of premium functions.
The so-called ”funding condition” is a further constraint. At any time during
the insurance contract is in force we require that

BS(t)(t, n) ≥ PS(t)(t, n)

Since the principle of equivalence only has to be fulfilled at policy begin, we
are able to construct insurance contracts with increasing, decreasing or level
premiums according to given laws or customers needs.

Assume an insured pays a premium π in state 0, i.e. ”Active”, and receives a
lump sum c0h for a transition to state h and an annuity bh in state h until death,
where h might be 1 or 2, i.e. ”Care at home” or ”Care in a nursing home”. The
discretized version of above actuarial values can be obtained correspondingly
to the time-continuous case, i.e. we have to calculate the expectation of the
random present values. This is nothing else than the sum over the values of the
outcome multiplied by the probability of this outcome happening. Note that
P0h(0, t) is the probability to be at time 0 in state 0 and to transfer to state
h at time t, whereas p0h(t) is the probability to transfer from state 0 to state
h in the interval (t, t + 1]. As seen above, we can express P0h(0, t) in terms of
the one-year transition probabilities p0h(t), h ∈ S (see Haberman and Pitacco
(1999)). We obtain the following actuarial values for a z-year old insured:

P0,π :=
ω−z−1∑

t=0

P00(0, t)v
tπ;

B0,c0h
:=

ω−z−1∑
t=0

P00(0, t)p0h(t)v
tc0h;

B0,bh
:=

ω−z−1∑
t=0

P0h(0, t)v
tbh

where ω is the limiting age, i.e. the probability to survive beyond ω is assumed
to be zero. Outflows occur for transitions to state 1 and 2. Therefore we have
to add up the actuarial values of these outflows and obtain, using the principle
of equivalence, the following equation:

P0,π =

ω−z−1∑
t=0

P00(0, t)v
tπ =

2∑
h=1

B0,c0h
+

2∑
h=1

B0,bh
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We simply factor π out and divide the right hand side by the rest of the sum
giving us the premium to be charged for any values of bh and c0h. For any LTC-
plan we can calculate the necessary LTC-premiums using actuarial values and
the principle of equivalence if we know the financial and probabilistic structure.
Thus we need to estimate the one-year transition probabilities for a z-year old
individual that has been LTC-claimant for t years out of our set of data, derive
the actuarial values and calculate the necessary premium.

3 Aalen-Johansen Estimator

As mentioned before we need a estimator for the transition matrix of a Marko-
vian multi-state model, in our case a three-state model with states ”Care at
home”, ”Care in a nursing home” and ”Death”. The following notations will
be used:

• t1 < t2 < . . . are times, where transitions are observed.

• d
(j)
gh is the number of lives, that transfer from state g to state h at time

tj .

• r
(j)
g is the number of lives in state g, alive and uncensored just prior to

time tj.

If only one transition is observed at all t′js, the Aalen-Johansen estimator, a
non-parametric estimator for the transition matrix of a Markovian multi-state
model P (t, u) = (Pgh(t, u))g,h∈S, is according to Aalen and Johansen (1978)
defined as

P̂(t, u) :=
∏

j:t<tj≤u

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . . . . . . . . . . . . . 0
0 1 . . . . . . . . . . . . 0

0 . . . 1 − d
(j)
gh

r
(j)
g

. . .
d
(j)
gh

r
(j)
g

. . . 0

0 . . . . . . 1 . . . . . . 0
0 . . . . . . . . . 1 . . . 0
0 . . . . . . . . . . . . 1 0
0 . . . . . . . . . . . . . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

assuming the only transition at time tj occurs from state g to state h. This es-
timator is a product of matrices at each time a transition is observed. Element
(g, g) is equal to 1 − d

(j)
gh /r

(j)
g and element (g, h) is equal to d

(j)
gh /r

(j)
g , which is

the number of lives that transferred from state g to h at time tj divided by
the number of lives in state g just prior to time tj ; all other diagonal elements
are equal to one, whereas other off-diagonal elements equal to zero.

If we take a two-state model with states ”Alive” and ”Death” the Aalen-
Johansen estimator reduces to the well-known Kaplan-Meier estimator (Ka-
plan and Meier (1958)).
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It is clear from the definition that P̂ (t, u) is a stochastic matrix ∀t, u and
one can see that the Chapman-Kolmogorov equations hold, as well. So all
requirements on the transition probabilities of a Markovian multi-state model
are fulfilled. If more than one transition occurs or transitions to different states
at the same time the entries of this matrix have to be modified accordingly
(see Helms (2003)).

Further one can show, using the theory of counting processes, more precisely
Duhamel’s equation, that the Aalen-Johansen estimator is almost unbiased,
which is of importance in the following. It is even an unbiased estimator if
the probability that r

(j)
g = 0 is equal to zero for all times tj and states g.

Given a large sample of observations this is usually the case and we refer in
the following to the Aalen-Johansen estimator as an unbiased estimator. The
necessary theory and a proof of this result can be found in Andersen et al.
(1993).

The Aalen-Johansen estimator is calculated using the life-history of all lives,
but does not take their associated covariates into account, and we receive only
a single estimate of the transition matrix. Thus we need a way to generate the
data required for a regression analysis and construct a relationship between the
Aalen-Johansen estimator and the covariates of each live under observation.
This can be done using pseudo-values.

4 Pseudo-Values

We assume we are given a sample of n observations x = (x1, . . . , xn), e.g.
the claim-history of LTC-patients, and an estimator θ̂ = s(x), e.g. the Aalen-
Johansen estimator; according to Efron and Tibshirani (1993) we define the
ith-jackknife sample of x as

x−i := (x1, . . . , xi−1, xi+1, . . . , xn)

This is the same data set as x, but with the ith-observation removed. The ith-
jackknife replication of θ̂, the so-called ”leave-one-out” estimator, is defined
as

θ̂−i := s(x−i)

This is nothing else than the estimator θ̂ based on the ith-jackknife sample;
in other words, we calculate the estimator θ̂ without the ith-observation. The
ith-pseudo-value of θ̂ is defined as

θ̃i := θ̂ + (n − 1) · (θ̂ − θ̂−i) = n · θ̂ − (n − 1) · θ̂−i (2)

Jackknife is usually used to detect outliers and check the bias and precision of
an estimator: For a good estimator θ̂ one would expect that the ith-jackknife
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replication of θ̂ is roughly the same as θ̂ and consequently equal to the ith-
pseudo-value. Andersen et al. (2001) suggested to go now a step further and
perform a regression analysis using these pseudo-values θ̃i: For n observations,
we are able to calculate n pseudo-values and thus generate data required for
a regression analysis. But still, there is nothing which links the ith-pseudo-
value with the covariates of any observation. How this link can be provided is
explained in the following:

Let xi be the realization of a random variable Xi, e.g. the claim-history of
the ith-LTC-patient. We assume that the Xi’s are independent and identically
distributed with expectation θ, and that an unbiased estimator θ̂ is available
for θ, e.g. the Aalen-Johansen estimator, that is E[θ̂] = θ.

Given i.i.d. covariates Zi = (Zi1, . . . , Zip)
T , which might be age, sex, level of

care etc. with distribution function C, we can write:

θ = E[Xi] = E[E[Xi|Zi]] =

∫ ∞

0

E[Xi|Zi = z]dC(z)

We define

θi := E[Xi|Zi = zi],

where zi, i = 1, . . . , n are the observed covariate values. Estimating C, the
distribution of the i.i.d. covariates Zi, by its empirical distribution Ĉ the pa-
rameter θ can be interpreted as the simple average of the θi’s since

θ ≈
∫ ∞

0

E[Xi|Zi = z]dĈ(z) =
1

n

n∑
i=1

θi.

Since E[θ̂] = θ we have E[θ̂] ≈ 1
n

∑n
i=1 θi. The same holds true if we remove

one observation since the data are assumed i.i.d. and we can go through the
above steps with the ith-jackknife sample and it follows that

E
[
θ̂−i

]
≈ 1

n − 1

∑
j �=i

θj .

Since the data is only available given the covariates, we need a link between
the estimator θ̂ and the quantity θi = E [Xi|Zi = zi]. Therefore Andersen
et al. (2001) defined the quantity θ̃i as the summary statistic θ̂ based on the
entire sample modified in the direction given by the ”leave-one-out estimator”
(θ̂− θ̂−i), that we defined as the pseudo-values above. Using the above results
it follows that

E[θ̃i] = E[n · θ̂ − (n − 1) · θ̂−i] ≈
∑

j

θj −
∑
j �=i

θj = θi.
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Where does this lead to? The expectation of θ̃i is approximately equal to θi,
that takes, in contrast to θ, the covariates Zi = zi into account. In other words
we match the covariates of the ith-observation with the ith-pseudo-value. This
establishes a relationship between the covariates and the pseudo-values. For
our data we use the Aalen-Johansen estimator of the transition matrix from
time t to u based on the whole data set as well as on the data set with the ith-
observation removed to construct the ith-pseudo-value of the transition matrix
from time t to u. The ith-pseudo-value can then be matched to covariates of
the ith-claimant. We assume that the relationship between the pseudo-values

θ̃i and the covariates is, for example, given by a GLM for θ̃i with link function
g(·), see McCullagh and Nelder (1989), that is

g(θ̃i) = ZT
i β

where β is the parameter vector to be estimated. For our data we choose the
logit as link-function and normal errors, i.e.

θ̃i =
exp{ZT

i β}
1 + exp{ZT

i β} + εi with εi ∼ N(0, σ2) i.i.d.

This leads us to a regression model for the transition probabilities over the
whole period transitions are observed. But we are instead more interested in
the change of the transition probabilities over time, since we need the one-year
transition probabilities to calculate the necessary actuarial values. Therefore
we have to extend above model to a multivariate one: We consider a series of

time-points t0, . . . , tk and define θ̂ := (θ̂(t0), . . . , θ̂(tk)) calculating the pseudo-
values analogue to (2) as

θ̃il := n · θ̂(tl) − (n − 1) · θ̂−i(tl) i = 1, . . . , n l = 0, . . . , k (3)

For our purpose we use the Aalen-Johansen estimator (1) and define the
pseudo-values for each element of the transition matrix:

θ̂
(gh)

(t) := P̂gh(t, t + 1) := P̂gh(t) t = 0, . . . , T

giving us θ̂
(gh)

= (θ̂
(gh)

(0), . . . , θ̂
(gh)

(T )). We calculate the Aalen-Johansen
estimator based on the entire sample and the ”leave-one-out estimator” for all
i = 1, . . . , n and t = 0, . . . , T giving us the pseudo-values P̃(i,gh)(t) as defined

in (3), i.e. P̃(i,gh)(t) = n·P̂(gh)(t)−(n−1)·P̂(−i,gh)(t). Since the Aalen-Johansen
estimator is a matrix, we obtain for each observation i one matrix of pseudo-
values at each time-point t, t = 0, . . . , T giving us nT pseudo-value matrices,
that is

P̃(i)(t) := (P̃(i,gh)(t), g, h ∈ S). (4)
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We assume now a regression model for each element of P̃(i)(t) on Zi to quantify
the effect of the covariates on the transition probabilities. To perform this
regression we assume that the relationship between P̃i,gh(t) and the covariates
is given by a GLM with link function g(·), i.e.

g(P̃i,gh(t)) = α
(gh)
t + ZT

i β(gh).

As covariates we include an intercept term, ”Age”, ”Sex”, ”Level of care 2”,
”Level of care 3” and ”Duration of Care”, denoted by Zi1, Zi2, Zi3, Zi4, Zi5

and α
(gh)
t . This means that Zi1 = 1 ∀i = 1, . . . , n and Zi2 denotes the age at

transition time t.

Note that the covariates ”Sex”, ”Level of care 2” and ”Level of care 3” and
”Duration of care” are factors, which will be dummy coded, i.e.

Zi3 :=

{
0 if the individual is female
1 if the individual is male

Zi4 :=

{
0 if the individual is in level of care 1 or 3
1 if the individual is in level of care 2

Zi5 :=

{
0 if the individual is in level of care 1 or 2
1 if the individual is in level of care 3

α
(gh)
t :=

{
1 if the duration is in the interval (t, t + 1]
0 otherwise

Note that the Aalen-Johansen estimator is a matrix. Therefore we perform a
regression analysis for each element of this matrix. Our model for the pseudo-
values of the transition probability from state g to state h is the following:

P̃i,gh(t) =
exp{α(gh)

t + ZT
i β(gh)}

1 + exp{α(gh)
t + ZT

i β(gh)}
+ εi,gh(t) i = 1, . . . , n t = 0, . . . , T

(5)
where εi,gh ∼ N(0, σ2

(gh)). Further Zi = (Zi1, Zi2, Zi3, Zi4, Zi5)
T is the vector

of covariates and β(gh) = (β1, β2, β3, β4, β5)
T the vector of parameters to be

estimated. Define

ηi,gh(t) := α
(gh)
t + ZT

i β(gh) ∈ R

µi,gh(t) :=
exp{α(gh)

t + ZT
i β(gh)}

1 + exp{α(gh)
t + ZT

i β(gh)}
=

exp{ηi,gh(t)}
1 + exp{ηi,gh(t)} ∈ [0, 1].

Even though P̂gh(t) and P̂−i,gh(t) are estimated transition probabilities, i.e.
restricted to the interval (0, 1), the corresponding pseudo-value P̃i,gh(t) = n ·
P̂gh(t) − (n − 1) · P̂−i,gh(t) does not need to satisfy this restriction for finite
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n. Therefore we assume a normal error distribution for the pseudo-values and
specify the link function with the logit g(p) = log{ p

1−p
} and the variance

function as constant, that is

P̃i,gh(t) ∼ N(µi,gh(t), σ
2
(gh)) i = 1, . . . , n, g, h ∈ S

where µi,gh(t) is the value of the inverse of the link function evaluated at
ηi,gh(t).

The problem at hand now is a problem of longitudinal data analysis: Since
the same lives are observed at different time points, correlation between the
pseudo-values occurs in our model. Pseudo-values of different individuals can
still be assumed to be independent, but the pseudo-values from the same ob-
servation at different times are obviously dependent. Therefore we use gener-
alized estimating equations (GEEs) instead of standard Maximum Likelihood
estimation in GLMs.

5 Parameter Estimation

In the last section we showed how to generate the data for a regression ana-
lysis using pseudo-values and provided reasons that allow us to match the
ith-pseudo-value with the covariates of the ith-observation. In particular we
proposed to use the GLM (5) to model the relationship between pseudo-values
and their corresponding covariates. Since the pseudo-values of an individual at
different time-points are correlated we have to allow for this correlation when
parameters are estimated.

Generalizing Maximum Likelihood (ML) estimation leads us to Maximum
Quasi-Likelihood (MQL) estimation . In the following we present this more
general method since the further extension from MQL estimation to GEEs
becomes then even more clear. Also, for a distribution from the exponential
family, as in our case, the log-likelihood function is identical to the quasi-
likelihood function and we obtain the same parameter estimates in ML and
QML estimation anyway. For further details see Wedderburn (1974).

In contrast to the ML approach, where the whole distribution function of the
outcomes yi’s is specified, for the MQL approach only the link- and variance
function are specified. Wedderburn (1974) defined for each observation the
quasi-likelihood function, denoted by K(yi, µi), by the relationship

∂K(yi, µi)

∂µi

=
yi − µi

vi

(6)

where µi := E[yi] and vi := V ar[yi]. The latter can be expressed by the
variance function k(·) evaluated at µi and divided by the dispersion parameter
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φ: vi = k(µi)/φ. Equation (6) is analogue to the situation of a GLM using the
ML approach, where the first order derivative of the log-likelihood function
with respect to µi is given by

∂l(yi, µi)

∂µi

=
yi − µi

vi

Both, ML estimation in GLMs and MQL estimation, can be performed by
solving the set of the so called score equations for GLMs or the score-like
equations for Quasi-Likelihood, respectively for a regression parameter β =
(β1, . . . , βp). The latter has the following form:

SL(β) =
n∑

i=1

∂K(yi, µi)

∂β
=

n∑
i=1

∂K(yi, µi)

∂µi

∂µi

∂β
=

n∑
i=1

(yi − µi) v−1
i

∂µi

∂β
= 0

(7)
Using the Fisher Scoring method, one can show that the score equations for
GLMs and the score-like equations for Quasi-Likelihood can be solved using
an iterative weighted least-squares algorithm (see Wedderburn (1974)).

However, both approaches rely on the assumption of independence between
observations. For longitudinal data this assumption still holds for the outcomes
of different observations but not for the outcomes of the same observation at
different points in time. Therefore we need a model that takes correlation
into account. The GEE approach, introduced by Liang and Zeger (1986) and
Zeger and Liang (1986) can be seen as the extension of Quasi-Likelihood to
longitudinal data.

For this we observe for each subject i the response yit at times t = 1, . . . , T .
In addition we have the corresponding covariate vectors xit = (xit1, . . . , xitp)

T

available. Further we define µit = E[yit] and vit = V ar[yit] assuming that
they exist. In vector notation we have the subject specific response vector
yi = (yi1, . . . , yiT )T , µi = (µi1, . . . , µiT )T and the subject specific design matrix

Xi =

⎛
⎝ xi1

. . .
xiT

⎞
⎠ =

⎛
⎝ xi11 . . . xi1p

. . . . . . . . .
xiT1 . . . xiTp

⎞
⎠ ∈ R

T×p

For T = 1 we are in the situation of quasi-likelihood as sketched above. Addi-
tionally, if we specify the distribution of yit as a distribution from the expo-
nential family we recover the situation of the classical likelihood.

We assume now a similar regression setup as in GLMs. This means that the
relationship between the linear predictor ηit := xitβ = xit1β1 + . . .+xitpβp and
µit is given by the link function g(·):

g(µit) = ηit = xitβ or µit = g−1(ηit)
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The variance vit is defined as the variance function k(·) evaluated at µit and
divided by the quantity φ, the so-called scale parameter, that is

vit := k(µit)/φ

This leads us for each observation to the following derivative of the quasi-
likelihood function K(yit, µit) with respect to the mean function µit, that is

∂K(yit, µit)

∂µit
=

yit − µit

vit

For each yi we define the same T × T correlation matrix R(α), that is fully
parametrized by a s × 1 correlation parameter vector α. We only require
R(α) to be a correlation matrix and call it the ”working” correlation matrix,
since we do not expect it to be correctly specified, though we want consistent
estimates and consistent variances of these estimates. We define Vi using the
T × T diagonal matrix Ai := diag(viφ) with vi = (vi1, . . . , viT )T as

Vi := A
1
2
i R(α)A

1
2
i /φ. (8)

If R(α) is the true correlation matrix for yi, the matrix Vi is equal to the true
covariance matrix for yi, that is Vi = Cov[yi], since

Cov[yi] = V ar[yi]
1
2 Corr[yi]V ar[yi]

1
2 = diag(viφ)

1
2 R(α)diag(viφ)

1
2 /φ = Vi.

In addition to β and φ we have now also to estimate α. To obtain the GEE
estimates of β we solve the score equations

UG(β) :=

n∑
i=1

∂l(yi; β)

∂β
=

n∑
i=1

∂l

∂µi

∂µi

∂β
=

n∑
i=1

(
∂µi

∂β

)T

V −1
i (yi − µi) = 0 (9)

Further we define

Dit :=
∂µit

∂β
and Di := (Di1, . . . , Dik)

T =
∂µi

∂β
∈ R

k×p. (10)

With (10) the score equations in (9) can be rewritten as

UG(β) =

n∑
i=1

DT
i V −1

i Si =

n∑
i=1

Ui(β, α) = 0, (11)

where Ui(β, α) := DT
i V −1

i Si and Si = yi − µi. If only one observation is
available for each subject, that is T = 1, this equation becomes identical to
the score-like equation (7) obtained for quasi-likelihood.

In contrast to the quasi-likelihood approach from Wedderburn (1974), the
matrix Vi in the function Ui(β, α) depends for each i not only on the parameter
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β but also on the parameter α. A next step is now to replace α and φ by any
n

1
2 -consistent estimators. Recall that an estimator θ̂n for θ is n

1
2 -consistent if

∀η > 0 ∃ a constant k(η) and an integer n(η) such that P (|n− 1
2 (θ̂n − θ)| ≤

k(η)) ≥ 1 − η ∀n > n(η). Assuming that β and φ are known we denote the
estimator for α by α̂(β, φ) := α̂(Y, β, φ). Given β we take φ̂(β) := φ̂(Y, β) as

estimator for φ. We insert these n
1
2 -consistent estimators in (11) and obtain:

UG(β) ≈
n∑

i=1

Ui

(
β, α̂(β, φ̂(β))

)
= 0

We define the GEE estimator of β, denoted by β̂G, as the solution of this
equation. Under mild regularity conditions, we have that

n
1
2

(
β̂G − β

) L→ Z as n → ∞ (12)

where Z has a Np(0, VG) distribution. Further

VG = lim
n→∞

n

(
n∑

i=1

DT
i V −1

i Di

)−1( n∑
i=1

DT
i V −1

i Cov [yi] V
−1
i Di

)(
n∑

i=1

DT
i V −1

i Di

)−1

.

Here Np(µ, Σ) denotes the multivariate normal distribution with mean vec-
tor µ and covariance matrix Σ. A sketch of the proof of this result can be
found in Liang and Zeger (1986) while Helms (2003) provides further details.
The GEE estimates of β, α and φ are determined by iterating between a
iterative weighted least-squares algorithm based on Fisher-Scoring for β and
moment estimation for α and φ. To estimate the values of α and φ, Liang and

Zeger (1986) use Pearson residuals, that can be calculated in each step of the
iteration given the current value β̂C for β̂G as

r̂it :=
yit − µ̂it

k(µ̂it)
1
2

where we calculate µ̂it := g−1(xitβ̂C) with the current value for β̂G. Let N
be again the number of all observations, that is N = nT , we can get a new
estimate of φ by

φ̂−1 =

n∑
i=1

T∑
t=1

r̂2
it

N − p
,

which is the longitudinal analogue of the familiar Pearson statistic (Zeger and
Liang 1986). This can be seen as follows:

E

[
n∑

i=1

T∑
t=1

(yit − µ̂it)
2

k(µ̂it)/φ

]
= E

[
n∑

i=1

T∑
t=1

(yit − µ̂it)
2

ˆV ar[yit]

]
≈ N − p
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⇒ φ−1 ≈ 1

N − p
E

[
n∑

i=1

T∑
t=1

(yit − µ̂it)
2

k(µ̂it)

]
≈

n∑
i=1

T∑
t=1

r̂2
it

N − p

The estimation of the parameter α depends on the correlation structure se-
lected for the working correlation matrix. Liang and Zeger (1986) presented
five different types of correlation structure: An ”independent”, ”exchange-
able”, ”unstructured”, ”autoregressive (AR-I)” and ”one-dependent” working
correlation. In the following we are going to define these correlation structures
and give corresponding estimators for them:

When the working correlation matrix R(α) is chosen to be the identity matrix,
we do not allow for any correlation between observations even if we measure
the same observations at different points in time, i.e. we ignore the depen-
dency present in the data. In this case estimation of the correlation matrix is
unnecessary, since the correlation matrix is fixed to the identity matrix.

If we choose the working correlation matrix as ”exchangeable”, the correlation
between different observations within a time series is the same regardless of
the distance in time. In particular we assume

Corr[yit, yit′ ] = α ∀ t �= t′.

An estimator for α corresponding to this correlation structure is given by

α̂ =
φ̂

n

n∑
i=1

T∑
t>t′

r̂itr̂it′/

(
1

2
· T · (T − 1) − p

)
.

In the ”unstructured” case, a totally unspecified working correlation matrix
R is used. We have to estimate all 1

2
·T · (T −1) correlations. This can be done

by setting

R̂ :=
φ̂

n

n∑
i=1

A
− 1

2
i SiS

T
i A

− 1
2

i ,

where Ai := diag(viφ̂) and Si = yi − µi.

The ”autoregressive (AR-I)” working correlation is nothing else than the corre-
lation structure of a continuous first-order autoregressive process (AR-I). This
means that observations with the same distance in time have the same corre-
lation and the correlation decreases polynomially as the distance increases. In
particular we have
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Corr[yit, yit′] = α|t−t′|.

Since in the case of an ”autoregressive (AR-I)” correlation structure E[r̂itr̂it′ ] ≈
α|t−t′|, Liang and Zeger (1986) suggested to estimate the parameter α by the
slope estimate obtained from the regression of log{r̂itr̂it′} on log{|t − t′|} for
i = 1, . . . , n, t = 1, . . . , T .

In contrast to the polynomial decrease of the correlations in the ”autoregres-
sive (AR-I)” case is the ”dependent” correlation structure. Observations with
the same distance do still have the same correlation, but for each distance a
separate value, not necessarily decreasing, is assumed, i.e

Corr[yit, yit′ ] = α|t−t′| if t �= t′.

A special case of the ”dependent” working correlation matrix is the ”one-
dependent” structure. This is equivalent to the correlation structure of a sta-
tionary Markov process of degree one, i.e.

Corr[yit, yit′ ] :=

{
α|t−t′| if t ≤ 1
0 if t > 1

The ”one-dependent” correlation structure has T − 1 parameters, that can be
estimated by

α̂t :=
φ̂

n − p

n∑
i=1

r̂i,tr̂i,t+1.

In the case where αt = α for all t = 1, . . . , T − 1 we can estimate the overall
α by

α̂ =
1

T − 1

T−1∑
i=1

α̂t.

Since βG and VG are robust to the choice of the correlation structure (see
Liang and Zeger (1986)) we obtain using the asymptotic normality unbiased
estimates even if the correlation structure is misspecified. Clearly, if we choose
the working correlation matrix close to the true correlation the estimates will
be more efficient. For details on simulation studies using different correlation
structures and misspecified correlation structures see Liang and Zeger (1986).

A program written by Mark X. Norleans allows for five correlation structures
for the GEE estimation. They include the ”independent”, ”exchangeable”,
which is called ”compoundsymmetric”, the ”unstructured”, ”autoregressive
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(AR-I)” and ”dependent” correlation structure. GEE parameter estimation of
α and φ can be facilitated in this program. The program is designed for the sta-
tistical software program Splus can be obtained from http://lib.stat.cmu.edu/.

Another statistical software program called ”Oswald” is developed by the
Statistics Group at the University of Lancaster and can be obtained from
http://www.maths.lancs.ac.uk/Software/Oswald/ as a Splus library. Here ad-
ditional correlation structures are possible: Beside the above mentioned cor-
relation structures one can choose between a ”stationary Markov process” or
a ”non-stationary Markov process” structure of degree ”Mv”, where ”Mv” is
a quantity to be specified. Further a fixed user-specified matrix ”R” can be
used as well as the correlation structure of an autoregressive process of degree
”Mv”.

6 Application to LTC-Data

Now all necessary tools are given to estimate transition probabilities from a
set of data containing the claim-history of LTC-patients directly. In summary
we proceed as follows:

First calculate the non-parametric Aalen-Johansen estimates P̂(t, t + 1) for
t = 0, . . . , T of the transition probability matrices ignoring the covariate infor-
mation defined in (1). In the next step generate the ith pseudo-value matrices
P̃(i)(t) defined in (4) for i = 1, . . . , n. Assume that element by element the

GLM given in (5) holds for P̃(i)(t). To adjust for the correlation present among

the pseudo-values P̃i,gh(t), t = 0, . . . , T , i = 1, . . . , n, g, h ∈ S we apply now
the GEE estimation approach described in Section 4.

For a specified working correlation matrix R(α) and φ = σ2 we estimate β,
α and σ2 by GEE. For choosing R(α) we first fitted an ”unstructured” work-
ing correlation. Based on the correlation matrix estimated in this approach we
decided then which correlation structure would represent this estimated corre-
lation matrix best and performed another regression using this new correlation
structure as working correlation matrix.

Since for a transition from state 1 to 2, that is from ”Care at home” to ”Care
in a nursing home”, the values in the ”unstructured” correlation matrix were
quite small we chose the ”independence” working correlation matrix, i.e. it is
fixed to the identity matrix and does not need to be estimated. In contrast to a
transition from state 1 to 2 we obtained for a transition from state 1 to 3 larger
estimated correlations using the ”unstructured” working correlation matrix.
Since the correlations tend to decrease when the distance in time increases we
considered an ”autoregressive (AR-I)” correlation structure sufficient for this
transition probability. In the case of a transition from state 2 to 3 we also
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decided to use the ”autoregressive (AR-I)” working correlation matrix, since
a similar behavior in the correlation estimate of the ”unstructured” working
correlation matrix can be observed.

In Table 1 we summarized the estimates obtained from the GEE approach for
all possible transitions of the model shown in Figure 1, using above mentioned
working correlations. The corresponding p-values are based on the asymptotic
normality result presented in Section 5. In particular standard error estimates
of the regression parameter estimates are based on an estimate of VG given in
(12).

working correlation Independence AR-I AR-I
transition from state g to h g = 1, h = 2 g = 1, h = 3 g = 2, h = 3

β̂
(gh)
j Values Pr(|t| >) Values Pr(|t| >) Values Pr(|t| >)

Intercept -5.31 0.00 -2.16 0.00 7.40 0.00
Age 0.02 0.05 0.02 0.02 -0.06 0.00
Sex 0.66 0.00 0.36 0.07 1.51 0.00
Level of care = 2 -1.37 0.00 -0.69 0.00 -1.96 0.00
Level of care = 3 -1.38 0.00 -0.53 0.02 -2.27 0.00
α̂

(gh)
t

Duration of care = 1 0.35 0.30 0.02 0.71 0.34 0.19
Duration of care = 2 0.40 0.25 0.18 0.01 -1.08 0.00
Duration of care = 3 0.90 0.01 0.88 0.00 -0.37 0.19
Duration of care = 4 1.24 0.00 0.99 0.00 -1.68 0.00
Duration of care = 5 0.10 0.85 0.74 0.00 -1.96 0.00
Duration of care = 6 1.53 0.00 0.41 0.01 -1.06 0.01
Duration of care = 7 -0.11 0.88 0.24 0.18 -0.65 0.16
Duration of care = 8 0.25 0.60 0.82 0.00 -0.09 0.88
Duration of care = 9 0.80 0.11 1.19 0.00 -2.28 0.00
Duration of care = 10 1.26 0.00 -0.48 0.12 -0.03 0.97

Table 1: Parameter estimates of Model 5 and their p-values for all transitions of the
Markovian three-state model for LTC in Figure 1 using the GEE approach

Estimated transition probabilities can now be derived from these estimates for
any given set of covariates simply by calculating for person i

P̂
(i)
gh (t) :=

exp{α̂(gh)
t + ZT

i β̂
(gh)}

1 + exp{α̂(gh)
t + ZT

i β̂
(gh)}

.

Generally the probability for a transition from state 1 to 2 or 3 increases with
age, whereas it decreases for a transition from state 2 to 3, but very slightly.
The values of all three estimated transition probabilities are higher for males
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than the values for females as indicated by a significant positive value of the
estimated regression coefficient corresponding to the covariate ”Sex”.

Transitions out of state ”Care at home” are more likely to happen to individu-
als in ”Level 1”, whereas the values for individuals in ”Level 2” and ”Level 3”
are nearly the same. This can be understood looking at the regression coeffi-
cient estimates for ”Level of care 2” and ”Level of care 3” that are nearly
the same for these transition probabilities. The probability of dying in state
”Care at home” decreases from ”Level 1” to ”Level 2” before it increases to
”Level 3” but does not reach the value from ”Level 1” again. In contrast, for
a transition from state 2 to 3 one observes decreasing transition probabilities
for an increase in the severeness of care needed.

The ”Duration of Care” causes rising transition probabilities for transitions
out of state 1 until a duration of four years, then a decrease can be observed for
three years until they increase again. For the transition from state ”Care in a
nursing home” to ”Death” the values are very close together for all durations
and only small changes occur. With these estimates we are finally able to

calculate the premiums for the LTC-plan ”PET” sold by a German insurer.
According to this LTC-plan the insured receives a certain allowance depending
on the level of care needed. This is for ”Care at home” 25% in ”Level 1”, 50%
in ”Level 2” and 75% in ”Level 3” and for ”Care in a nursing home” 100%
of the allowance. Thus, the c0h’s are zero and in the case of ”Care at home”
bh = 1 − 0.25 ∗ (4 − h), where h ∈ {1, 2, 3}, for an unit allowance and in the
case of ”Care in a nursing home” bh = 1, h ∈ {1, 2, 3}.

For the calculation of the premiums we use a modified version of a C-program,
which needs the benefits, interest rate and transition probabilities as input.
For details see Rudolph (2000). The results for the LTC plan ”PET” obtained
for a 10 EUR daily allowance and an interest rate of 3.5 % can be found in
the left columns of Table 2. The right columns show premiums offered by a
German health insurer.

We observe higher premiums when a GEE estimation approach is used com-
pared to the commercial premiums, but we can see that the behavior with
respect to age is similar as well as the proportion between males and females,
see Figure 3. It also should be noted that the incidence rates and mortality
rates for ”Active” individuals include administrative costs, whereas the transi-
tion probabilities do not. Therefore a direct comparison between the calculated
premiums using GEEs and the commercial premiums might not be sensible.
Further, the LTC-definition in different countries, such as Japan and Germany,
varies and therefore country-specific incidence rates might be necessary.
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Age Premium based Premium offered by
on GEEs German health insurer

Female Male Female Male

20 04.94 03.85 02.12 01.70
25 06.14 04.80 02.92 02.33
30 07.70 06.05 03.90 03.10
35 09.76 07.72 05.05 04.01
40 12.51 09.97 06.44 05.13
45 16.14 12.95 08.16 06.52
50 21.01 16.95 10.39 08.36
55 27.58 22.40 13.32 10.86
60 36.48 29.88 17.31 14.40
65 48.53 40.06 22.01 18.84
70 64.55 53.62 29.04 25.71

Table 2: Comparison of Premiums for a 10 EUR daily allowance

7 Summary and Discussion

This paper gives a detailed introduction to a method proposed by Andersen
et al. (2003) for estimating transition probabilities directly and its application
to a large German LTC portfolio. In particular the necessary actuarial setup
for calculating premiums based on a Markovian multi-state model is provided.
For the required transition probabilities pseudo values of the Aalen-Johansen
transition matrix estimators which are specific to the claim history of a LTC
patient are generated. These are linked to patient specific covariates in a longi-
tudinal GLM with normal errors and a logistic link function. The parameters
of this longitudinal GLM are estimated using a GEE approach accounting
for correlation within the claim history of a patient. These provide finally
the required transition probability estimates for calculating LTC premiums.
Diverse statistical tools ranging from survival analysis, jackknifing methods,
GLMs to GEE estimation for longitudinal regression models are introduced
and discussed to give a basis for understanding how this method for estimating
transition probabilities directly is working.

Even though Andersen et al. (2003) have investigated the validity of their
method through simulation some further points are worthwhile to be addressed
in further research. More precisely, in our case there are no methods available
at the moment to examine the goodness-of-fit or confirm the choice of link
function in the longitudinal GLM used. The choice of time-points might also
influence the results, but in our case the time-points are given, since we need
one-year transition probabilities for the calculation of actuarial values. Further,
more precise estimates might be obtained if the correlation matrix is chosen
close to the true one.

An alternative to GEE estimation in longitudinal GLMs is to use a Bayesian
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Figure 3: Comparison of Premiums

approach for estimation. This will require the use of Markov Chain Monte
Carlo (MCMC) methods (see for example Gilks et al. (1996) and Gamerman
(1990)). Bayesian model selection criteria such as Bayes factors (see Kaas and
Raftery (1995)) and the deviance information criteria (DIC) by Spiegelhalter
et al. (2002) can then be applied to assess goodness of fit and the choice of
link function. This approach will be pursued in future research.
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