EconStor >
Humboldt-Universität zu Berlin >
Sonderforschungsbereich 373: Quantification and Simulation of Economic Processes, Humboldt-Universität Berlin >
Discussion Papers, SFB 373, HU Berlin >

Please use this identifier to cite or link to this item:
Title:Transitional Dynamics in the Uzawa-Lucas Model of Endogenous Growth PDF Logo
Authors:Reiß, Markus
Bethmann, Dirk
Issue Date:2003
Series/Report no.:Discussion papers of interdisciplinary research project 373 2003,17
Abstract:We introduce an easy way of analyzing the transitional dynamics of the Uzawa-Lucas endogenous growth model. We use the value function approach to solve both the social planner?s optimization problem and the representative agent?s optimization problem in the decentralized economy. The complexity of the Hamilton-Jacobi-Bellman equation is significantly reduced to a one-dimensional initial value problem for an ordinary differential equation. This approach allows us to find the optimal controls for the non-concave Hamiltonian in the centralized economy and to detect multiple transition paths in the decentralized economy for a large external effect, which are hidden when using the maximum principle. We simulate the global transitional dynamics towards the balanced growth path. The adjustment of the model?s state variable turns out to accelerate along the transition paths. By the asymmetry of the sectors an until now unknown feature is predicted for the adjustment in the output growth rate. Its relative speed follows a hump-shaped course: Starting from a relative scarcity in physical capital, the growth rate of output decelerates first before it starts rising again.
Persistent Identifier of the first edition:urn:nbn:de:kobv:11-10050032
Document Type:Working Paper
Appears in Collections:Discussion Papers, SFB 373, HU Berlin

Files in This Item:
File Description SizeFormat
dpsfb200317.pdf298.86 kBAdobe PDF
No. of Downloads: Counter Stats
Download bibliographical data as: BibTeX
Share on:

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.