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Abstract

We introduce an easy way of analyzing the transitional dynamics of
the Uzawa-Lucas endogenous growth model. We use the value function
approach to solve both the social planner’s optimization problem and the
representative agent’s optimization problem in the decentralized economy.
The complexity of the Hamilton-Jacobi-Bellman equation is significantly
reduced to a one-dimensional initial value problem for an ordinary dif-
ferential equation. This approach allows us to find the optimal controls
for the non-concave Hamiltonian in the centralized economy and to detect
multiple transition paths in the decentralized economy for a large external
effect, which are hidden when using the maximum principle.

We simulate the global transitional dynamics towards the balanced
growth path. The adjustment of the model’s state variable turns out to
accelerate along the transition paths. By the asymmetry of the sectors an
until now unknown feature is predicted for the adjustment in the output
growth rate. Its relative speed follows a hump-shaped course: Starting
from a relative scarcity in physical capital, the growth rate of output
decelerates first before it starts rising again.

∗The support of the DFG-Sonderforschungsbereich 373 is gratefully acknowledged. We
would like to thank Michael C. Burda and Harald Uhlig, and seminar participants at Humboldt
University for helpful comments.
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1 Introduction

Endogenous growth theory studies macroeconomic models where the growth
rate of output and other key statistics are determined within the model. A very
intuitive and widely known endogenous growth model is the AK model. AK
denotes the aggregate production function where the positive constant A stands
for the level of technology and the variable K captures capital in a broad sense,
i.e. it includes for example human capital and infrastructure. Non-diminishing
returns then induce growth1.

The AK model presented here is based on the Uzawa (1965) and Lucas (1988)
endogenous growth model. Its main feature is the fact that the representative
agent – or the social planner – has to allocate his or her human capital between
two production sectors. First, there is a goods sector where a single good
usable for consumption and physical capital investment is produced. This sector
exhibits a production technology that uses human and physical capital. Second,
there is a schooling sector where the representative agent produces his stock of
human capital. Here, human capital is the only production factor. In short:
the agent has to ‘learn or to do’ (Chamley (1993)). The two sector structure
considered here constitutes the main difference to the usual AK model where
intellectual and physical capital are summed-up in the single variable K.

In his seminal paper Lucas (1988) argues that the agents’ average level of
human capital contributes to the productivity of all factors of goods production.
In a decentralized economy the individual’s accumulation of human capital has
no appreciable influence on the economy’s average level of human capital. In
a decentralized symmetric equilibrium no one therefore takes this effect into
account when deciding how to allocate her human capital. The mechanism
behind this market failure is analogous to that in a Nash game producing the
prisoner’s dilemma. When deciding how much to invest in human capital the
agents have no incentive to take their influence on the average level of human
capital into account. This results in a non-efficient equilibrium in the sense
that the agents’ discounted utility could be higher without making a single
agent worse off. As a result the solution for the centralized economy where this
external effect is exploited by the planner differs from the decentralized case.

The failure of the second welfare theorem in the Uzawa-Lucas endogenous
growth model has inspired Benhabib and Perli (1994) to study parameter spaces
that give rise to multiple equilibria. Their solution method is however not
applicable in the centralized case since the Hamiltonian is not concave in the
presence of a positive external effect. In general the centralized case has been
neglected in the literature. The aim of our paper is to analyze the centralized
case as well as the decentralized case. The theoretical model considered here
differs from Benhabib and Perli (1994) only in the choice of the utility function.
We assume logarithmic preferences which imply that the constant intertemporal
elasticity of substitution is equal to one. This assumption reduces the number of
parameters by one and simplifies calculations. Nevertheless the balanced growth

1The interested reader is referred to Barro and Sala-i-Martin (1995) for a general treatment
of growth theory and to Aghion and Howitt (1998) for endogenous growth theory.
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path implications are analogous to those in the more general case. Mulligan
and Sala-i-Martin (1993) stress that a parametrization where the inverse of the
intertemporal elasticity of substitution is bigger than the output elasticity of
physical capital in the goods sector is empirically the most relevant case. Xie
(1994) studies the special constellation where both parameters are equal. Xie
also focusses on the decentralized case and the chosen parameters allow him to
derive the explicit dynamics. Hartley and Rogers (2003) solve an Arrow and
Kurz (1970) type of a two sector growth model in closed form after introducing
a stochastic disturbance in the law of capital accumulation.

The model’s parametrization chosen here makes it possible to write down an
explicit functional form of a solution to the resulting Hamilton-Jacobi-Bellman
equation. This allows us to follow the value function approach rather than the
Pontryagin maximum principle adopted by the above-mentioned papers. The
knowledge of an explicit functional form solving the Hamilton-Jacobi-Bellman
equation facilitates our analysis. We are able to reduce the dimension of the
optimal decision rules and thereby simplify our analysis. Our “candidate” func-
tion, however, is not the planner’s value function except for one specific initial
value. We show that at this particular value a saddle point behavior occurs.
An application of the candidate function outside the steady state yields an un-
stable solution branch. For the stable solution through this saddle point, which
is the true value function, an analytical expression is unknown, but by suitable
transformation the numerical analysis becomes easily tractable. For this we
take advantage of the fact that we already know the explicit form of the value
function at one point. Finally, it turns out that the transitional paths of the
optimal decision rules are determined by an ordinary differential equation in the
model’s parameters. The global character of our method allows to study the
model far away from the balanced growth path. For the decentralized economy
we are able to find multiple transition paths so far undetected in the literature.

Our simulations of the model’s solution show that the model implies hump-
shaped adjustment of output growth rates. When physical capital is relatively
scarce the growth rate of output is very high but declining. The growth rate
even falls below the balanced growth path value before it starts rising again
and finally converges to the balanced growth rate. We argue that the model’s
inherent asymmetry is responsible for this feature. By shifting human capital
from the educational sector to the goods sector it is possible to transform human
capital into physical capital. Since the schooling technology is linear in human
capital a transformation in the opposite direction is not possible.

The paper is organized as follows. Section 2 introduces the model. In Section
3 we present our strategy of solving the central planner’s problem. In Section
4 we slightly adjust our strategy from the previous section in order to cope
with the decentralized economy. The basic ideas remain similar, but a higher
analytical and numerical effort is needed because a fixed point problem occurs.
In Section 5 we present simulation results implying the hump-shaped course of
output growth. Section 6 concludes. Appendix A contains proofs of statements
omitted in the paper. Appendix B discusses further simulation results.
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2 The model

This section introduces the theoretical model. We assume a closed economy pop-
ulated by a large number of identical infinitely-lived agents. Firms are producing
a single good and there is a schooling sector providing educational services.

2.1 The households

We assume that the population is constant and normalized to one. The repre-
sentative agent has logarithmic preferences over consumption streams

U =
∫ ∞

t=0

e−ρt log (ct) dt, (1)

where ct is the level of consumption at time t and ρ > 0 is the subjective discount
rate. The logarithmic utility function implies that the intertemporal elasticity
of substitution is equal to one. Agents have a fixed endowment of time, which is
normalized as a constant flow of one unit. The variable ut denotes the fraction
of time allocated to goods production at time t. Furthermore, as agents do not
benefit from leisure the whole time budget is allocated to the two production
sectors. The fraction 1− ut of time is spent in the schooling sector. Note that
in any solution the condition

ut ∈ [0, 1] (2)

has to be fulfilled. The variables ct and ut are the two control variables of the
agent. When maximizing the discounted stream of utility the agent has to pay
attention to the following budget constraint:

rtkt + wtutht = ct + k̇t, ∀t ≥ 0,

where k̇t is the rate of change of the agent’s physical capital stock kt. Since we
abstract from depreciation, this rate corresponds to the agent’s net investment
in physical capital. The variables rt and wt are market clearing factor prices, i.e.
the real interest rate and the real wages, respectively. These prices are taken as
given by the representative agent.

The left hand side describes the stream of income derived from physical
capital plus the income stream stemming from human capital ht used in the
goods producing sector, i.e. htut. We assume that the initial values of kt and
ht are strictly positive. On the right hand side the spending of the agent’s
earnings appears, which he can either consume or invest. Another constraint
the agent has to keep in mind is the evolution of his stock of human capital
when allocating 1− ut to the schooling sector.

2.2 The schooling sector

The creation of human capital is determined by a linear technology in human
capital only:

ḣt = B (1− ut) ht, (3)
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where we assume that B is positive2. This technology together with constraint
2 implies that human capital will never shrink, i.e. the growth rate ḣ must
be non-negative. If we set ut in equation (3) equal to zero, we get the po-
tential growth rate of human capital. If we set ut equal to one, a stagnation
of human capital follows. The schooling technology implies that the potential
marginal and average product coincide and are equal to B whereas the realized
marginal and average product are equal to B (1− ut). Note that we abstract
from depreciation.

2.3 The goods sector

We assume an infinitely large number of profit maximizing firms producing a
single good. They are using a Cobb Douglas technology in the two inputs phys-
ical and human capital. The level of human capital utilized in goods production
equals the total level of the stock of human capital multiplied by the fraction of
time spent in the goods sector at time t. Total factor productivity A is enhanced
by the external effect γ of the economy’s average stock ha,t of human capital.
Hence, output yt is determined by:

yt = Akα
t (htut)

1−α
hγ

a,t.

The parameter α is the output elasticity of physical capital and we assume
α ∈ (0, 1). We further assume that the exponent γ is nonnegative. If we set ut

equal to one, we get the potential output in the goods sector. Since all agents
are homogeneous, the economy’s average level of human capital must equal the
representative agent’s level of human capital at any point in time:

ht = ha,t, ∀t ≥ 0. (4)

The firm has to rent physical and human capital on perfectly competitive factor
markets. In the decentralized economy the representative firm’s profit Π in
period t is given by:

Π (kt, ht;ha,t) = Akα
t (htut)

1−α
hγ

a,t − rtkt − wtutht,

where the semicolon indicates that the economy’s average level of human capital
is treated as exogenous by the firms (and the agents). The first order conditions
for the profit maximizing factor demands are:

rt ≡ ∂yt

∂kt
=

αyt

kt
and wt ≡ ∂yt

∂ (utht)
=

(1− α) yt

utht
.

The market clearing factor prices ensure that the zero profit condition holds.
Inserting the prices into the agent’s budget constraint yields the same restriction
as would have been imposed by the central planner:

yt = ct + k̇t, ∀t ≥ 0,

2The case when B equals 0 corresponds to the neoclassical growth model.
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Note that by consuming more than current production it is possible to disin-
vest in physical capital, i.e. the growth rate of physical capital turns negative.
Having introduced the basic features of our model we now turn to the social
planner’s problem and its solution.

3 The centralized economy

In a centralized economy the planner exploits the equality condition of equation
(4). His dynamic optimization problem (DOP) is given by:

U = max
{ct,ut}∞t=0

∫ ∞

t=0

e−ρt log (ct) dt,

with respect to the state dynamics

k̇t = Akα
t u1−α

t h1−α+γ
t − ct, ∀ t ≥ 0,

ḣt = B (1− ut)ht, ∀ t ≥ 0,

kt ≥ 0 and ht ≥ 0 ∀ t ≥ 0.

The initial values k0, h0 > 0 are assumed to be given. Requiring the initial
stocks of capital to be strictly positive ensures an interior solution and rules out
trivial solutions. Since we assume a Cobb Douglas production technology and
logarithmic utility, this restriction will be satisfied automatically under optimal
controls.

Although we stated the above DOP for the central planner, it turns out that
the representative agent’s DOP in the decentralized economy is very similar.
The only difference between the two is the use of equation (4). The central
planner uses this information before deriving the first order conditions whereas
the representative agent uses it thereafter. This difference reflects the inefficient
incentive structure described in the introduction.

In Section 3.1 we solve the central planner’s DOP presented above. Using
homogeneity in the initial conitions, we are able to reduce the corresponding
Hamilton-Jacobi-Bellman (HJB) equation to only one implicit ordinary differ-
ential equation. We can give an explicit solution of the HJB equation, but this
“candidate” is not the planner’s value function except for one specific initial
value. We show that at this point a saddle point behavior of the HJB equa-
tion occurs and that it describes the balanced growth path of the economy. An
application of the candidate function to the left of the steady state yields an
unstable solution branch giving non-admissible controls, that is physical cap-
ital tends to minus infinity for t → ∞. Applying the candidate to the right
of the steady state finally results in an excess accumulation of physical capital
indicating that the agents’ consumption level is dynamically inefficient. For the
stable solution through this saddle point, which is the true value function, an
analytical expression is unknown.

In Section 3.2, we transform the problem of determining the value function
into an initial value problem for an explicit one-dimensional ordinary differential
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equation. The linear approximation at the saddle point is given in terms of the
parameters. Moreover, the explicit form makes it possible to apply the classical
Euler scheme in order to determine the solution numerically3.

3.1 The social planner’s optimization problem

In the DOP, the two control functions ct and ut are chosen by the social planner
given the set of admissible controls

(ct, ut)t≥0 ∈ X := {(f, g) : [0,∞) → X | f, g locally bounded and measurable}

with X := [0,∞) × [0, 1]. Using the logarithmic utility function and the ex-
ponential discount rate, the planner defines the representative agent’s value
function:

V (k0, h0) := max
(c,u)∈X

{∫∞
0

log(ct)e−ρt dt, τ = ∞
−∞, τ < ∞,

where τ denotes the stopping time

τ := inf{t ≥ 0 | k(t) = 0}.

This is a classical optimal control problem with infinite horizon (Fleming and
Soner, 1995, Section I.7). However, the results derived there are not directly
applicable because x 7→ xp for p ∈ (0, 1) and x > 0 is only locally Lipschitz
continuous and we allow V = −∞. Nevertheless, it turns out that the optimal
controls imply dynamics where the state variables are bounded away from zero
so that τ = ∞ holds and the above-mentioned conditions are satisfied. In order
to determine the value function, we write down the HJB equation for the value
function V (·) at k, h > 0 and t ≥ 0:

ρV = max
(c,u)∈X

(
log(c) + Vk(Akαu1−αh1−α+γ − c) + VhB(1− u)h

)
.

Here, Vk and Vh denote the partial derivatives ∂V
∂k and ∂V

∂h , respectively and can
be interpreted as the shadow prices of relaxing the corresponding constraints.
Recall that in the case of an infinite time horizon, time-homogeneous equations
and an exponential discount rate, the HJB equation simplifies to a differential
equation that is independent of time. Observe further that the planner has
already inserted the symmetric equilibrium condition stated in equation (4).

We determine the maximum by looking at the first order necessary condi-
tions. The implied optimal controls are given by:

c∗ = V −1
k , (5)

u∗ =
(

A(1− α)Vk

BVh

)1/α
k

h(α−γ)/α
. (6)

3This scheme is provided by standard mathematical software packages.
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The planner chooses the consumption stream such that the marginal utility is
equal to the marginal change of wealth with respect to physical capital. The
optimal allocation of human capital between the two sectors is determined by the
weighted ratio of the marginal changes in goods and human capital production
due to a marginal shifting of the human capital allocation. The respective
weights are the shadow prices of the corresponding state variable. Then this
ratio is raised to the power of the inverse of the output elasticity of physical
capital.

Since the value function V (·) is obviously increasing in its arguments, the
relation found for c∗ ensures that the consumption rate is positive. Equally,
u∗ ∈ (0,∞) holds, but u∗ > 1 may well occur. For the moment, let us suppose
that the values (u∗, c∗) found above are in X. Then the HJB equation becomes:

ρV + 1 = − log(Vk) + αk (AVkhγ)
1
α

(
1− α

BVh

) 1−α
α

+ BVhh. (7)

In fact the HJB equation is homogeneous in the initial conditions. This allows
us to follow Mulligan and Sala-i-Martin (1993) in defining a so-called state-like
variable xt := kth

−(1−α+γ)/(1−α)
t . Note that Ax1−α

t is the potential output to
capital ratio. The introduction of xt reduces the complexity of the problem by
one dimension. Its dynamics are given by

ẋt = Axα
t u1−α

t − ctxtk
−1
t − 1−α+γ

1−α B(1− ut)xt (8)

Introducing the control-like variable qt := ctxtk
−1
t , we see that the evolution of

xt is completely described by xt, ut and qt. For any initial state (k̃0, h̃0) with
x̃0 := k̃0h̃

−(1−α+γ)/(1−α)
0 = x0 we are led to apply the same controls ũt = ut

and q̃t = qt. The only difference is that the consumption rate c̃t differs from ct

by the factor (h̃0/h0)(1−α+γ)/(1−α). Any solution V (k, h) can thus be deduced
from V (x, 1) =: f(x) via

V (k, h) = f(kh−(1−α+γ)/(1−α)) + 1−α+γ
ρ(1−α) log(h).

The HJB equation in terms of f can be derived from

Vk(k, h) = f ′(x)xk−1,

Vh(k, h) = 1−α+γ
1−α

(
ρ−1h−1 − f ′(x)xh−1

)
.

After simplifying and collecting terms we finally obtain

ρf(x) + 1− B(1−α+γ)
ρ(1−α) + log f ′(x) = B(1−α+γ)

1−α x

(
ϕ

1−α
α f ′(x)

1
α

( 1
ρ − f ′(x)x)

1−α
α

− f ′(x)

)
,

(9)

where the constant ϕ is given by

ϕ :=
(A(1− α)2−ααα

B(1− α + γ)

) 1
1−α

> 0.
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We claim that a solution to this equation is given by

f(x) :=
B 1−α+γ

1−α + ρ log(ρ)− ρ

ρ2
+

1
ρ

log(x + ϕ). (10)

Indeed, we have f ′(x) = 1/(ρx + ρϕ) and thus

ρf(x) + 1−B 1−α+γ
ρ(1−α) + log f ′(x) = 0,

as well as ρ−1 − f ′(x)x = ϕf ′(x) and hence

ϕ
1−α

α f ′(x)
1
α

( 1
ρ − f ′(x)x)

1−α
α

= f ′(x).

We infer that a candidate for the value function is given by:

W (k, h) =
B 1−α+γ

1−α + ρ log(ρ)− ρ

ρ2
+

1
ρ

log
(
k + ϕh

1−α+γ
1−α

)
, k, h > 0. (11)

However, note that limk→0 W (k, h) = W (0, h) > −∞ = V (0, h) holds, which is
contradictory to τ = 0. In any case, this function W is an upper bound for the
true value function V :

V (k, h) ≤ W (k, h), ∀ k, h > 0.

The appendix presents a proof of this fact.
Moreover, if for some (k0, h0) the pair (c∗t , u

∗
t ), derived from the first order

conditions, is in X and τ = ∞ holds, then all inequalities in the proof become
equalities, this pair is the optimal control and V (k0, h0) = W (k0, h0) holds. We
insert the controls derived from W

c∗ = ρ(x + ϕ)
k

x
, u∗ =

(
A(1− α)2

Bϕ(1− α + γ)

) 1
α

x =
(

B(1− α + γ)
Aα(1− α)

) 1
1−α

x (12)

into the dynamics equation (8) for xt:

ẋt =
(

B(1−α+γ)

(Aα)
1

2−α (1−α)

) 2−α
1−α

x2
t +

(
B(1−α+γ)

α − ρ
)
xt − ρ

(
A(1−α)2−ααα

B(1−α+γ)

) 1
1−α

(13)

A search for steady states of xt shows that on the positive axis ẋt only vanishes
for the value

xss := ρ
( A(1− α)2−αα

B2−α(1− α + γ)2−α

)1/(1−α)

=
ραϕ

B(1− α + γ)
.

This steady state xss leads to the balanced growth path, for which the controls
qss = css

t xss/kt and uss derived from W remain constant and are thus admissible
as long as u∗ ≤ 1 holds.

Linearizing the right hand-side of equation (13) at x = xss shows that xss

is locally unstable and we infer that W yields the unstable solution branch.
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Proposition 1. If xss := k(0)
h(0) = ραϕ

B(1−α+γ) and ρ 1−α
1−α+γ ≤ B hold, then the

controls

css
t = ρ

xss + ϕ

xss
kt = ρ

(
k(0) + ϕh(0)

1−α+γ
1−α

)
exp

(
(B 1−α+γ

1−α − ρ)t
)
, (14)

uss
t = uss =

ρ(1− α)
B(1− α + γ)

(15)

are indeed optimal in X . In addition to the control u, the control-like variable
q remains constant as well:

qss
t = qss = ρ(xss + ϕ) = ρϕ

ρα + B(1− α + γ)
B(1− α + γ)

.

The brief proof of this proposition is given in the appendix. The fixed point
derived above is the unique balanced growth path equilibrium of the centralized
economy. For γ = 0 we recover the findings of Benhabib and Perli (1994).
However since the social planner’s Hamiltonian may well be non-concave they
focus on the decentralized case. We have shown that the allocation of human
capital is split over both production sectors and remains constant on this path.
Furthermore, it is possible to show that

css

yss
=

(1− α) (B (1− α + γ) + αρ)
B (1− α + γ)

(16)

holds, i.e. the fraction of output used for consumption is also constant. Under
our hypotheses this fraction is strictly smaller than one. For increasing values
of γ, capturing the degree of the external effect, the steady-state consumption
quote decreases. Furthermore, we learn that the steady-state allocation of hu-
man capital between the two production sectors is negatively related to the
degree of the external effect of human capital in goods production captured by
the parameter γ.

3.2 Determining the centralized solution

The main problem in solving the reduced HJB equation (7) stems from the
fact that it is not explicit in f ′. For this implicit differential equation standard
techniques (Bronstein and Semendjajew, 1987) are used to establish an explicit
differential equation for f ′. Since we can always add suitable constants to f solv-
ing (9), we restrict our attention to the homogeneous form f(x) = G(x, f ′(x))
of (9) where the function G is given by

G(x, p) := −ρ−1 log(p) +
x

uss

(
ψp

1
α (ρ−1 − px)

α−1
α − p

)
(17)

with ψ := ϕ(1−α)/α. The function G equals up to an additive constant and the
factor ρ the Hamiltonian of the transformed DOP. We find for the derivatives

Gx(x, p) = 1
uss p

(
ψ(ρ−1p−1 − x)

−1
α

(
ρ−1p−1 + 1−2α

α x
)− 1

)
, (18)

Gp(x, p) = −ρ−1p−1 +
ψx

uss
(ρ−1p−1 − x)

−1
α

(
α−1ρ−1p−1 − x

)− x

uss
(19)
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By the relationship of G with the Hamiltonian, the Pontryagin maximum prin-
ciple states for pt := f ′(xt)

ẋt = −pt +
ψxt

(
α−1p−1

t − ρxt

)

uss(ρ−1p−1
t − xt)

1
α

− ρxt

uss
, (20)

which can also be easily verified from equation (8) directly .
Due to f = G(x, f ′) we get f ′ = Gx(x, f ′) + Gp(x, f ′)f ′′. Thus, setting

p(x) := f ′(x), we arrive at the explicit differential equation in p

p′(x) =
p(x)−Gx(x, p(x))

Gp(x, p(x))
,

which in our case yields

p′ = p
uss + 1− ψ(ρ−1p−1 − x)

−1
α (ρ−1p−1 + 1−2α

α x)

−x− ussρ−1p−1 + ψx(ρ−1p−1 − x)
−1
α (α−1ρ−1p−1 − x)

.

The optimal consumption rate satisfies c∗ = V −1
k = k/(xf ′), such that consid-

ering q(x) = cx/k = f ′(x)−1 = p(x)−1, the rescaled consumption rate, which
we have already encountered in (8), we obtain a differential equation for this
control-like variable in terms of the state-like variable x:

q′ =
−p′

p2
= q

uss + 1− ψ(ρ−1q − x)
−1
α (ρ−1q + 1−2α

α x)

x + ussρ−1q − ψx(ρ−1q − x)
−1
α (α−1ρ−1q − x)

. (21)

This equation is now explicit in q′ and standard analytical and numerical meth-
ods can be used for its study. Since we know the value of q at the steady-state
initial condition x = xss, we face a classical initial value problem where the
solution is usually unique. Here, however, uniqueness fails because the candi-
date function W as well as the true value function both solve the initial value
problem. This is due to the fact that at (x∗, q(x∗)) in the fraction appearing in
equation (21) both numerator and denominator vanish and the right-hand side
is indeterminate.

We proceed as follows. The differential equation can be written as

q′(x) =
K(x, q(x))
L(x, q(x))

with K(xss, q(xss)) = L(xss, q(xss)) = 0.

In order to obtain determinacy at xss we use L’Hôpital’s rule, which gives

q′(xss) =
Kx(xss, q(xss)) + Kq(xss, q(xss))q′(xss)
Lx(xss, q(xss)) + Lq(xss, q(xss))q′(xss)

.

This leads us to a quadratic equation in q′(xss), one solution of which we already
know from W , namely q′(xss) = ρ. Therefore, the other solution is given by

q′(xss) = ρ−1−Kx(xss, q(xss))
Lq(xss, q(xss))

.
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This fraction is now determinate and

Kx = −(1−α)ψ
ussα2 q(ρ−1q − x)−(1+α)/α(2αρ−1q + (1− 2α)x),

Lq = ρ−1 + ψ(1−α)
ussα2ρ2 xq(ρ−1q − x)−(1+α)/α,

−Kx

ρLq
=

(1− α)ψq(2αρ−1q + (1− 2α)x)
ussα2(ρ−1q − x)(1+α)/α + ψ(1− α)ρ−1xq

implies

q′(xss) = ρ
(
1 +

2(uss)−1(1− α)2 + α(1− α)
1− α2 + ussα

)
. (22)

Note that this value is always larger than the other root ρ. This is explained
by the fact that this solution, corresponding to the true value function, will run
through the origin and thus has to be smaller than the first solution on the
interval [0, xss).

In sum, using the differential equation (21) and the steady-state values found
in Proposition 1, we can determine the values of the control-like variable q
at the state-like values x. From this we deduce the corresponding values of
f ′, c and u as well as of f and V for specified initial values x0 or h0 and
k0, respectively. Though uniquely determined, the stable solution branch can
only be approximated locally by the linearization given in (22) or globally by a
numerical solver.

4 The decentralized economy

In the decentralized economy the agents have no incentive to exploit the equality
of h and ha stated in equation (4) when deriving their decision rules. The
representative agent can write down his dynamic optimization problem (DOP):

U = max
{ct,ut}∞t=0

∫ ∞

t=0

e−ρt log (ct) dt,

with respect to the state dynamics

k̇t = Akα
t (htut)

1−α
hγ

a,t − ct, ∀ t ≥ 0,

ḣt = B (1− ut)ht, ∀ t ≥ 0,

kt ≥ 0 and ht ≥ 0 ∀ t ≥ 0,

given the path of ha,t. The initial values k0, h0, ha,0 > 0 of the state variables
are given as well. As in the previous case we can use the homogeneity in the
initial conditions of the HJB equation in order to determine an implicit ordinary
differential equation. The structure of this equation is the same as before, but
it now depends on an exogenous parameter ua.

As in the centralized case, we can transform the problem into solving one
explicit ordinary differential equation assuming ua to be given. This is done
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in the second paragraph of this section. For given values of x and ua we can
determine the optimal controls c = c(x, ua) and u = u(x, ua). Since the model
postulates that ua equals the representative agent’s u, we vary ua such that the
fixed point u(x, ua) = ua holds. It turns out that as long as γ < α holds, this
equation has always a unique solution. Hence, we have solved the optimization
problem also for the decentralized economy and can present some simulation
results in the next section.

4.1 The representative agent’s optimization problem

Our first step is again to define the value function for the DOP at hand. The
two controls ct and ut are chosen by the representative agent such that they are
in X and maximize his discounted utility while taking the economy’s average
level of human capital ha,t as given. For his optimization he only assumes that
ha,t does not grow faster than exponentially in time. The state equations are
not time-homogeneous, which is why in the dynamic programming approach the
value function is considered for general initial times t, not only t = 0, and the
set of admissible controls is given by

(c(·), u(·)) ∈ Xt := {(f, g) : [t,∞) → X | f, g locally bounded and measurable}.
In order to remain close to the notation in Section 3, the discounting of the
value function over time is cancelled by the factor eρt. Thus, the dynamic
optimization problem reads as follows4:

Ṽ (kt, ht, t) := max
(c,u)∈Xt

{
eρt

∫∞
t

log(c(s))e−ρs ds, τt = ∞
−∞, τt < ∞.

The parameter τt denotes the stopping time:

τt := inf{s ≥ t | ks = 0}.
The corresponding HJB equation is now also time-dependent:

ρṼ (k, h, t) = max
(c,u)∈X

(
log(c) + Ṽk(k, h, t)k̇t + Ṽh(k, h, t)ḣt + Ṽt(k, h, t)

)
. (23)

As before, we can show that a solution W̃ (k, h, t) of this equation, is always an
upper bound for the true value function Ṽ (k, h, t), as long as ha,t increases at
most exponentially and W̃ is concave in k and h. Again the proof can be found
in the appendix. We proceed as for the social planner’s problem. The first order
conditions are similar:

c∗ = Ṽ −1
k , (24)

u∗ =

(
A(1− α)Ṽk

BṼh

) 1
α kh

γ
α
a,t

h
. (25)

4The tilde stresses that we consider the value function of a representative agent and not
the central planner’s value function.
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The interpretation of these first order necessary conditions is the same as in the
centralized case and we therefore proceed with the insertion of these findings
into the time-dependent HJB equation (23). We obtain

ρṼ + 1 = − log(Ṽk) + αk
(
AṼkhγ

a,t

) 1
α

(
1− α

BṼh

) 1−α
α

+ BṼhh + Ṽt. (26)

Introducing the state-like variable xt := kth
−1
t h

−γ/(1−α)
a,t and the control-like

variable qt := cth
−1
t h

−γ/(1−α)
a,t gives as before

ẋt = Axα
t u1−α

t − qt −B(1− ut)xt − γḣa,t

(1−α)ha,t
xt. (27)

We therefore write

Ṽ (k, h, t) = f̃
(
kh−1h

−γ
1−α

a,t

)
+ 1

ρ log
(
hh

γ
1−α

a,t

)
.

The derivatives of Ṽ , expressed in terms of the redefined function f̃ and the
state-like variable x, are

Ṽk(k, h, t) = f̃ ′(x)xk−1

Ṽh(k, h, t) = −f̃ ′(x)xh−1 + ρ−1h−1

Ṽt(k, h, t) = − γ
1−α f̃ ′(x)xh−1

a,t ḣa,t + γ
ρ(1−α)h

−1
a,t ḣa,t.

Hence, we arrive at:

ρf̃(x) + 1 = − log f̃ ′(x) +
A

1
α α(1− α)

1−α
α f̃ ′(x)

1
α x

B
1−α

α (ρ−1 − f̃ ′(x)x)
1−α

α

+ B
(
ρ−1 − f̃ ′(x)x

)
+ γ

1−α (ρ−1 − f̃ ′(x)x)
ḣa,t

ha,t
.

Consequently, the HJB equation is again reduced. Here, we consider a family of
ordinary differential equations depending on the values h−1

a,t ḣa,t. At this point,
after the optimization, we use

ḣa,t = B(1− ua,t)ha,t, t ≥ 0, ua,t = u∗t , (28)

which is implied by symmetry (ha,t = ht). Substituting the expression (25)
for u∗t would yield wrong results because this would introduce a dependence of
h−1

a,t ḣa,t on x and f in the differential equation. We must still treat this term as
exogenous. We obtain

ρf̃(x) + 1− B(1−α+γ−γua,t)
ρ(1−α) + log f̃ ′(x)

= B(1−α+γ−γua,t)
1−α x

(
ϕ

1−α
α

a

( 1
ρ − f̃ ′(x)x)

1−α
α

− f̃ ′(x)

)
, (29)
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where ϕa depends on the value ua = ua,t:

ϕa :=
( A(1− α)αα

B(1− α + γ − γua)α

) 1
1−α

> 0.

Note that ϕa depends continuously and monotonously on ua, the values of which
lie in [0, 1]. A slightly modified version of function (10) namely

f̃(x) =
B 1−α+γ−γua

ρ(1−α) + ρ log(ρ)− ρ

ρ2
+

1
ρ

log(x + ϕa) (30)

is a solution of this reduced HJB equation, which only yields admissible controls
for the steady state xss of equation (27), which is given by

xss =
ραϕa

B(1− α + γ − γua)
. (31)

The corresponding optimal controls are found to be

uss =
ρ

B
and qss = ρ(xss + ϕa) = ρϕa

ρ(α− γ) + B(1− α + γ)
B(1− α + γ)− ργ

. (32)

Compared to the centralized case, the steady state allocation of human capital
between the two sectors is not influenced by the external effect of human capital
in goods production captured by γ. This tells us that along the balanced growth
path the agent has no incentive to take the external effect into account: human
capital just grows at a constant rate and thus affects the productivity in the
goods sector in a constant manner. Hence, for the allocation of human capital
along the balanced growth path, the degree of the external effect of human
capital in goods production plays no role in the decentralized economy. On a
transition path to the steady state however, the value of γ is important since
the growth rate of human capital changes over time. Therefore, the value of
γ is important in order to measure the effect on the productivity in goods
production.

Note that the same values for x in the centralized and the decentralized
solution yield different capital growth rates because on the balanced growth
path human capital will grow with the rate B − ρ 1−α

1−α+γ and the slower rate
B − ρ, respectively. The evolution of the decentralized economy is therefore
rather to be compared to an economy without external effect, i.e. γ = 0.

4.2 Determining the decentralized solution

In order to determine the optimal control q(x, ua) given a certain level of ua

we set ψ equal to ψa = ϕ
(1−α)/α
a in the explicit differential equation (21). The

derivation for this equation remains valid using this definition. On the other
hand, for the derivative of q at xss instead of the simplified expression (22) the
fraction for −Kx/(ρLq) found two lines earlier must be used. Hence, for given
ua the optimal controls can be found by the same methods as before, that is by
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linear approximation at the steady state or by global numerical approximation.
It remains to take care of the condition ua = u. Note that the only possible
steady state value of ua is ρ/B since u has this steady state value independent
of ua. That ua = u = ρ/B holds along the balanced growth path meets the
results of Benhabib and Perli (1994), which were derived by different methods.

Off the balanced growth path the representative agent has to find optimal
controls meeting the first order conditions (24) and (25). The implicit differen-
tial equation (29) is restricted to a particular realization of the parameter ua.
For a given level of x every ua implies certain values of f̃ ′, c and u as well as of
f̃ and Ṽ . Hence, there is a continuum of possibilities indexed by ua and a fixed
point problem has to be solved.

Given the parameter ua and the state x the agent chooses his human capital
allocation u. At this point the symmetry stated in equations (4) and (28)
respectively comes into play. The symmetry implies that in the next moment
the economy’s average allocation of human capital ua must now equal u. Hence
the agent has to rethink his decision and so forth. Mathematically speaking, u
and ua will converge with infinite speed (i.e. jump) to a stable fixed point.

Let us consider two different values u1
a < u2

a of ua. Given a certain state we
are in, how will the respective optimal controls u1 and u2 be related? We know
that the external effect ha in the second case grows more slowly, hence investing
in human capital will not pay as much as in the first case and u2 > u1 will be
chosen. This explains why u(x, ua) is increasing in ua.

This is corroborated in the left part of Figure 1. The function u(ua) and
the identity are plotted for the degree of the external effect γ = 0.1 where
for the state x = 1 holds. The intercept gives us the value ua(1) = 0.7522
for which u(x, ua) = ua holds at x = 1. In the right part of Figure 1 the
function ua(x) is shown. For a fine grid of points x the intercept has been
determined using interval bisection on the domain [0, 1]. Note that Brouwer’s
fixed point theorem (e.g., Rudin (1991)) guarantees the existence of a solution
of the equation u(ua, x) = ua for each x since the differential equation for f and
consequently also those for q and u depend continuously on ϕa, hence on ua.

Benhabib and Perli (1994) analyze the model with the more general version
of the isoelastic utility function where the parameter σ stands for the inverse
of the intertemporal elasticity of substitution. Setting σ equal to one gives the
model studied here and their local results show for the decentralized economy
that there still is a unique transitional path as long as we are in the neighborhood
of the steady state. This result is due to their local approach. For small values of
γ, i.e. not much larger than α, our simulation experiments confirm this finding
also off the balanced growth path. However for large values of γ there may be
more than one solution with ua = u. Our global approach shows that multiple
transition paths can occur in this model.

Figure 2 shows that in the case of a very strong impact of the external effect,
i.e. large γ, the fixed point is not unique anymore. For fixed value of x the
optimal control u then has a large curvature as a function of the average value
ua, which yields in fact three fixed points with the largest being equal to one.
Among these fixed points the smallest and the largest are stable in the sense
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Figure 1: left: optimal time share u with respect to ua at x = 1
right: the fixed point value of ua = u depending on x

that, given ua in a neighborhood of this fixed point, the control u to be chosen
is strictly closer to the fixed point so that u and ua will be immediately drawn
back to the fixed point. While the smallest fixed point is the one that converges
to the balanced growth path equilibrium value u = ua = ρ/B, the fixed point
u = ua = 1 yields interesting transition dynamics. Here, the agents do not
invest in their human capital, but only in physical capital. As a consequence
the physical to human capital ratio x increases rapidly. At some point, only the
smallest fixed point remains (u(ua, x) is decreasing in x) and the optimal value u
jumps immediately to this fixed point value. From there the transition dynamics
evolve as usually. It might even happen that we start with a ratio x0 < xss,
keep u = 1 fixed until some xt > xss is reached before finally converging to
xss from above. Interestingly, this means that given x = xss and ua = 1 it is
possible to choose u = 1 and thereby pushing x above its steady state value. At
some point the agents start setting u < 1, hence forcing ua to decline. Finally,
the decentralized economy will converge to its unique steady state equilibrium
with x = xss and u = ua = ρ/B established in equation (32).

An economic explanation of this phenomenon is as follows: Suppose that
ua = 1 holds, i.e. ḣa,t = B(1−ua,t)ha,t = 0. The agents behave as if total factor
productivity remains constant over some time before it starts rising rapidly. Due
to the strong external effect (γ large) and the relative lack of physical capital
(x small) there is a high incentive for all agents to invest in physical capital as
much as possible (u = 1) in order to benefit from future growth of total factor
productivity. The physical capital investment lowers the marginal productivity
of human capital in goods production and after some time investment in human
capital is performed: u < 1 is chosen. At this time very rapidly the agents
observe that the average human capital increases and thus it pays even more
to defer production of physical capital and u is reduced further. Very quickly a
new equilibrium (fixed point) is reached.
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Figure 2: left: multiple equilibria - u with respect to ua at γ = 5
right: bifurcation - the fixed point u = ua with respect to x

5 Simulation results

In the previous sections we have reduced the problem of determining the value
function to solving an explicit ordinary differential equation in q with value
q(xss) prescribed by the balanced growth path solution. Although an analyt-
ical expression of this solution is not known, an easy and fast Euler scheme
can be used to determine the function q numerically. This is a clear advantage
compared to the approach via the Pontryagin maximum principle adopted by
Benhabib and Perli (1994) as well as Bond, Wang, and Yip (1996), which yields
– even after reduction – three nonlinear coupled dynamic equations where only
the values for t →∞ are known from the balanced growth path. The more de-
manding techniques of backward solving for this kind of problems as advocated
by Brunner and Strulik (2002) are thus avoided.

In this section we make use of our findings and show that on the transition
path the output growth rate towards the balanced growth rate obeys a hump-
shaped course. Based on an annual approach we consider the following typical
calibration of the parameter values:

A = 1, B = 1
10 , ρ = 1

20 , α = 1
3 . (33)

Figure 3 shows the phase diagram of the centralized economy for q(x) setting
γ = 0.1. The straight line is the function q(x) = ρ(x + ϕ) which is derived
from the solution W , whereas the concave function starting in the origin is the
optimal control q derived from the true value function V , that is the numerical
solution of the differential equation (21). Both functions meet in the saddle
point (xss, qss). The concave dotted line indicates the curve where the function
L = L(x, q) vanishes. By the relationship (20) this corresponds to the values of
(x, q) where ẋt = 0 holds. Above this line the derivative ẋt is negative and below
it is positive. Geometrically speaking, in the upper region xt moves to the left
and in the lower region it moves to the right. The flatter dotted line corresponds
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to the values of (x, q) where q̇t = 0 holds. Above this line qt shrinks and below it
increases. This shows again that the linear control q derived from W corresponds
to the unstable solution branch, whereas the numerically determined optimal
control q is indeed globally stable and induces an adjustment to the balanced
growth path solution. Qualitatively, the phase diagram shows the same features
as for other classical growth models, cf. Chapter 16 in Intrilligator (1971).
Since the main implications of the centralized and the decentralized economy
are qualitatively similar we concentrate on the first with γ = 0.1 from now on.
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Figure 3: Phase diagram for (q, x) with saddle point

Figure 4 displays the growth rate of output with respect to the state-like
variable x and time t respectively. Analytically this rate can be subdivided as
follows:

ẏt

yt
= α

ẋt

xt
+ (1− α)

u̇t

ut
+

1− α + γ

1− α

ḣt

ht
. (34)

Let us discuss the terms in the sum separately as functions of x. The first
term ẋt/xt is positive for x < xss and negative for x > xss, tending to infinity
for x → 0, see Figure 5 in the Appendix. From the decay of u (x) we infer
that the second term u̇t/ut has the reverse property: it is negative for x < xss

and positive for x > xss. The last term ḣt/ht is never negative, monotonically
increasing with limx→∞ ḣ/h = B and ḣ (xss) /h (xss) = B−ρ. Hence, the three
terms behave very differently and yield in sum the surprising hump shape of
ẏ/yt that we observe.

The left of Figure 4 shows the simulation results for the growth rate of output
with respect to the state variable x. The horizontal line denotes the steady state
growth rate. The right intersection of both lines corresponds to the balanced
growth path.
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Large values of x correspond to the case when human capital is relatively
scarce. The agent invests in schooling activities in order to generate more human
capital. The resulting high growth rate of human capital explains the fact
that the output growth rate is above the balanced growth rate. At the same
time the agent may consume more goods than are currently produced, implying
disinvestment in physical capital and thus a following of the output growth rate.
Then human capital growth converges to the steady state and the output growth
rate imitates this behavior.

Small values of x correspond to a scarcity in physical capital. The agent can
not simply “eat” human capital in order to be on the balanced growth path.
Although he may wish to set u bigger than one, i.e. he would like to increase
productivity in the goods sector even if it costs him negative human capital
growth, he must wait until the physical capital stock achieves the corresponding
size. Let us assume that u is currently equal to one. Since the agent would like
to accumulate physical capital we know that the output stream is bigger than
the consumption stream. However, if u is equal to one, the goods technology
has diminishing returns in physical capital and therefore the additional unit of
k lowers marginal productivity in goods production. The output growth rate
declines and falls even below the balanced growth rate. When the restriction
u ≤ 1 is not binding anymore the agent starts to shift human capital to the
schooling sector and the decline of the marginal productivity of physical capital
is slowed down. This effect is the stronger the more human capital is shifted
to the schooling sector. At some point, due to the growing stock of human
capital the marginal productivity of physical capital even starts to rise again.
The output growth rate just imitates this behavior and finally converges to the
steady state growth rate. The hump-shaped course is even more pronounced
when we calibrate the productivity parameter B smaller.
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Figure 4:
left: Growth rate of output with respect to the state x
right: Growth rate of output with respect to time (years)

The right of Figure 4 shows the simulation results for the growth rate of
output with respect to time. The dashed curve corresponds to the case when
human capital is relatively scarce. The agent invests in schooling activities in
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order to generate more human capital. The high growth rates of human capital
together with its high marginal productivity in goods production explain the
fact that the output growth rate is above the balanced growth rate thereby
falling over time. The solid line starts with a scarcity in physical capital and
the same reasoning as above explains the reversed hump-shaped course. High
growth rates of physical capital together with its high but decreasing marginal
productivity explain the high but falling output growth rate. The effect is that
k grows slower and slower. After some time h starts to grow. This latter effect
counteracts the lowering of the marginal productivity of k. After some time
both effects exactly cancel out. Thereafter the second effect even dominates the
first one and the growth rate slowly converges from below to its steady state
value.

The above result is in sharp contrast to the neoclassical growth model, where
it is well known that the output growth rate falls the higher the physical capital
stock k is. Consider equation (34) without the u̇/u and ḣ/h terms. Interpreting
x as the physical capital stock then refers to the neoclassical growth model and
the growth rate is positive if x is smaller than its steady state value xss, negative
if x is bigger than xss, and zero if x = xss holds, i.e. the reversed hump-shaped
course does not show up in the neoclassical growth model.

6 Conclusion

In this paper, we have introduced an easy way of analyzing the transitional
dynamics of the Uzawa-Lucas endogenous growth model with logarithmic utility.
We have used the value function approach to solve both the social planner’s
optimization problem and the representative agent’s optimization problem in
the decentralized economy. By exploiting the homogeneity of the problem we
are able to reduce the complexity of the Hamilton-Jacobi-Bellman equation
significantly. We therefore merely have to solve a one-dimensional differential
equation in the parameters of the model. Our method applies in both cases,
the centralized and the decentralized economy. The only difference between the
two cases is that the representative agent has to deal with a family of ordinary
differential equations indexed by ua. Therefore, he has to solve a fixed point
problem such that there is no contradiction between the representative agent’s
and the average choice of u or ua, respectively. Since our method works in the
neighborhood of the steady state as well as on the transition path, it has global
character.

The Uzawa-Lucas endogenous growth model allows for a positive external
effect of human capital such that the second welfare theorem may not always
hold. The steady state relationships (15) and (32) show that in the presence of
an external effect, i.e. γ is strictly positive, the planner’s allocation of human
capital to the schooling sector is bigger than the representative agent would
have chosen in a decentralized economy. As our simulations show, this is also
true off steady state. The failure of the second welfare theorem in this model
gives a possible reasoning for indeterminacy that has been studied for example
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by Benhabib and Perli (1994) or Xie (1994). For the planner’s solution, we
show numerically that there is a unique transitional path to the steady state no
matter where we start.

The global character of our method enables us to find multiple transition
paths to the unique steady state so far undetected in the literature even if
x = xss holds. We find parameter constellations where there are two possi-
bilities with u = ua solving the Hamilton-Jacobi-Bellman equation (29). As
Xie (1994) argues this phenomenon may explain why we observe the process of
“lagging behind, catching up with, and overtaking”. This insight unveils the
shortcoming of local treatments prevailing in economic theory. Furthermore our
simulations show that the growth rate of output obeys a hump-shaped course,
which contradicts the predictions of the neoclassical model. This finding can
provide a theoretical explanation for non-monotonous rates of convergence be-
tween different countries observed empirically.

Appendix

A Proofs

A.1 W is an upper bound for the true value function V

For all k0, h0, t > 0 and all controls (ct, ut) ∈ X with τ > t we have

e−ρtW (kt, ht) = W (k0, h0) +
∫ t

0

(−ρe−ρsW (ks, hs)

+ e−ρsWk(ks, hs)k̇s + e−ρsWh(ks, hs)ḣs) ds

≤ W (k0, h0) +
∫ t

0

(−ρe−ρsW (ks, hs)

+ e−ρs(ρW (ks, hs)− log(cs)) ds

= W (k0, h0) +
∫ t

0

e−ρs(− log(cs)) ds,

where we have used that W solves the HJB equation or is at least an upper
bound, i.e. a supersolution, if (c∗t , u∗t ) /∈ X since we have not excluded the
values u∗t > 1. Hence, by rearranging the terms and taking the limit t →∞, we
obtain

V (k0, h0) ≤ W (k0, h0)− lim
t→∞

e−ρtW (kt, ht),

if the latter limit exists. Note that this inequality is always trivially valid for
τ < ∞. Since ht grows exponentially and ct ≥ 0 holds, also kt cannot grow faster
than exponentially and thus W (kt, ht) grows at most linearly, which implies that
the limit cannot be larger than zero. On the other hand, ht ≥ h0 holds for all
t ≥ 0 so that W (kt, ht) is uniformly bounded from below for all t ≥ 0. Hence,
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this last limit exists, equals zero, that is the transversality condition is fulfilled,
and

V (k0, h0) ≤ W (k0, h0)

holds, as asserted.

A.2 Proposition 1

Obviously, the controls css and uss are admissible because of uss ≤ 1 by as-
sumption. The value of xss ensures that we are on the balanced growth path
and ẋt = 0 holds so that the values of the controls are easily derived from (12).
Hence by the preceding remark on W , the controls are indeed optimal.

A.3 W̃ is an upper bound for the true value function Ṽ

For all kv, hv, t > v and any controls (cs, us) ∈ Xv with τv = ∞ we find

e−ρtW (kt, ht, t) = e−ρvW (kv, hv, v) +
∫ t

v

e−ρs
(−ρW (ks, hs) + Wk(ks, hs, s)k̇s

+ Wh(ks, hs, s)ḣs + Wt(ks, hs, s)
)
ds

≤ e−ρvW (kv, hv, v) +
∫ t

v

(−ρe−ρs log(cs)) ds.

The exponential growth bounds for ha,t and ht imply exponential bounds
for kt and ct so that limt→∞ e−ρtW (kt, ht, t) = 0 is guaranteed. We infer

W (kv, hv, v) ≥ eρv

∫ ∞

v

e−ρs log(cs) ds.

Since the controls were arbitrary, we have shown W (k, h, v) ≥ V (k, h, v) under
the only hypothesis τv = ∞. If τv < ∞ were true, the value function would
equal −∞ and the asserted inequality is trivially true.

B More simulation results

B.1 The state-like variable x

In the centralized economy the state-like variable xt adjusts to the balanced
growth path with exponential speed, but the rate gets slower the closer to the
steady state values we are, see Figure 5 left hand side. Again, the dashed line
corresponds to a scarcity in human capital while the solid refers to a scarcity in
physical capital. Since the agent is not allowed to disinvest in human capital but
very well in physical capital, the model obeys an asymmetry. This asymmetry
causes that the adjustment of xt proceeds faster for xt > xss. In the decen-
tralized economy the knowledge of ua allows us to simulate the adjustment of
the xt over time. The same phenomenon as for the central planner’s solution
occurs.
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Figure 5: Absolute and relative adjustment of xt over time

Next, we consider the relative adjustment rate ẋt

xt−xss . We find, that the
closer xt is to its limiting value xss, the faster the relative adjustment is. For
large values of t small oscillations can be seen, which are artefacts due to the
numerical approximation. In this region xt−xss is already of order 10−10 and the
numerical precision fades. Neglecting this effect, the rate is seen to converge for
t →∞ against the model’s stable eigenvalue. This is typical for growth models
and confirms our calculations. Let us now turn to the control-like variables.

B.2 The optimal choice of u

Figure 6 shows the value of u in the (x, γ) space as a surface. The black line
corresponds to the steady state values (xss, uss). Keeping γ fixed, the fraction
of time allocated to the goods production decreases when x increases. Similarly
u decreases when the external effect γ of human capital in goods production
increases, given a certain level of x. The first observation can be explained as
follows. A high value of x indicates that the economy’s endowment with human
capital is relatively low. This circumstance causes a high marginal productivity
of human capital in the goods sector. Arbitrage reasoning implies that the real-
ized marginal productivity of human capital in the schooling sector determined
by B (1− ut) must also be relatively high. Hence a comparable high fraction of
human capital is attracted by the schooling sector. This explains the relatively
low value of ut. The second effect occurs because in the presence of a higher
external effect the central planner finds it more attractive to accumulate human
capital in order to exploit the higher social return of human capital in goods
production. The second reasoning does also hold for the influence of γ on the
steady state value uss described in Section 3.1.

For small values of x and γ the planner is about to set u outside the region
where u ∈ [0, 1] holds. There we have to set u = 1 and solve the optimization
problem for c, keeping u = 1 fixed. Mathematically, this corresponds to a free
boundary problem. At this point we want to mention that we have studied the
difference in the solution shown above and a hypothetical solution where the
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planner is allowed to chose u freely from [0,∞), i.e. the planner may temporarily
wish to disinvest in human capital. We found that the values of the control-like
variable q for both solutions are very similar. The planner arranges the con-
sumption pattern in such a way that the disadvantage of the binding constraint
u ≤ 1 is borne by all points in time. Therefore the hypothetical consumption
path is smoothed and very close to the true path. This follows directly from
the constant elasticity of substitution of degree one implied by the logarithmic
utility function.
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Figure 6: optimal time share u with respect to (x, γ)

B.3 The control-like variable q

Figure 7 shows the value of the control-like variable q in the (x, γ) space. Holding
γ constant, we see that q increases with x. Since we have a single good economy,
this effect is very intuitive. For fixed γ we can draw a line from the point
(q, x) = (0, 0) and any point on the surface for the same γ. By concavity, this line
lies below the surface, hence telling us that although c and k move in the same
direction, k moves faster. If we consider a point on the surface where xt ≤ xss

holds, the slope of the line which is equal to the economy’s c
k ratio is higher than

in the steady state. The consumption level increases slowly, while the physical
capital stock increases slightly faster. However, the difference in both rates
becomes more and more negligible as the economy reaches the steady state.
An equivalent reasoning is true when xt ≥ xss holds. Here, the two variables
are decreasing, the consumption level in a slower manner than the stock of
physical capital. Further simulation results show us that for very high values of
x the consumption level may even be higher than the output flow. These are
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the regions where u is very small and the planner tries to accumulate as much
human capital as possible even if the current consumption stream is generated
by disinvestment in physical capital. This again shows the way the constant
elasticity of intertemporal substitution drives the consumption decisions. Even
a temporary disinvestment of physical capital is taken into account in order to
smooth the consumption path.

The dark line in Figure 7 is again the projection of the steady state value
qss = q(xss) onto the surface. It shows that the steady state ratio of consump-
tion and physical capital increases with γ. This is due to the curvature of the
surface. We find that the model implies realistic consumption capital ratios.
Empirically it is well known that the consumption quote is about 60 percent5,
while equation (16) implies values between 5

6 for γ = 0 and 7
9 for γ = 1

3 and
is never below 2

3 for γ → ∞. The numbers for k
y are hard to estimate and

therefore not very exact. We found values between 1.8 for the United Kingdom
and 3.0 for Japan6. Together these numbers imply that c

k should lie around 1
4 .

As can be seen in Figure 7, our simulation replicates this ratio for the steady
state values of ct

kt
, i.e. for qss

xss .
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Figure 7: optimal consumption q with respect to (x, γ)

5See for example Burda and Wyplosz (2001). Using IMF data they find values between
56.2 percent for Germany and 64.9 percent for the USA.

6See Maddison (1995) cited in Burda and Wyplosz (2001).
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