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Abstract

In the post-crisis era, financial institutions seem to be more aware
of the risks posed by extreme events. Even though there are attempts
to adapt methodologies drawing from the vast academic literature on
the topic, there is also skepticism that fat-tailed models are needed. In
this paper, we address the common criticism and discuss three popular
methods for extreme risk modeling based on full distribution modeling
and and extreme value theory.
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1 Introduction

The extreme losses which occurred in the financial crisis of 2008 raised the
question of whether existing models and practices, largely based on the Gaus-
sian distribution represent an adequate and reliable framework for risk mea-
surement and management. Following the financial crisis, different ideas
for methodology improvements have been proffered in white papers such as
Sheikh and Qiao (2009) and Dubikovsky et al.| (2010), drawing from the
existing literature on modeling of extreme events.

Empirical studies on the properties of asset return distributions date back
to the pioneering work of Mandelbrot| (1963)) and Fama (1963, 1965) who re-
jected the assumption of normality and suggested the class of stable Paretian
distributions as an extension to the Gaussian hypothesis. Their work led to
the consolidation of the stable Paretian hypothesis which underwent em-
pirical scrutiny in the 1970s and 1980s. It was reported that even though
stock returns exhibit tails thicker than those of the Gaussian distribution,
there are a few inconsistencies between observed financial return distribu-
tions and those predicted by the stable Paretian distribution. The empirical
inconsistencies are related mainly to a failure of the temporal aggregation
property, that is, tail thickness does not change with return frequency, and
the infinite-variance property of stable laws.

Even though some of the statistical techniques used to derive these con-
clusions are disputed and the class of stable laws has been suggested as a
viable theoretical framework[]] alternative classes of distributions were sug-
gested. Examples include the Student’s ¢ distribution considered by Blat-
tberg and Gonedes (1974)), the more general class of hyperbolic distributions
considered by Eberlein and Keller (1995), and finite mixture of normals con-
sidered by Kon| (1984). Generalizing the notion of stability to other proba-
bilistic schemes, Mittnik and Rachev| (1993)) considered geo-stable, Weibull,
and other distributions. More recently, tempered stable distributions have

1See Rachev and Mittnik| (2000) and the references therein.


http://www.iijournals.com/doi/abs/10.3905/jpm.2011.37.2.107
http://www.iijournals.com/doi/abs/10.3905/jpm.2011.37.2.107

been suggested as a model for asset returns because they retain some of the
attractive theoretical properties of stable Paretian distributions but have a
finite variance and can explain the temporal aggregation propertyﬂ

Clearly, there is no fundamental theory that can suggest a distributional
model for financial returns and the problem remains largely a statistical one.
Nevertheless, the extensive body of empirical research carried out since the
1950s leads to the following stylized facts:

(1) clustering of volatility — large price changes tend to be followed by large
price changes and small price changes tend to be followed by small price
changes.

(2) autoregressive behavior — price changes depend on price changes in the
past, e.g. positive price changes tend to be followed by positive price
changes.

(3) skewness — there is an asymmetry in the upside and downside potential
of price changes.

(4) fat tails — the probability of extreme profits or losses is much larger
than predicted by the normal distribution. Tail thickness varies from
asset to asset.

(5) temporal behavior of tail thickness — the probability of extreme profits
or losses can change through time; it is smaller in regular markets and
much larger in turbulent markets.

(6) tail thickness varies across frequencies — high-frequency data tends to
be more fat-tailed than lower-frequency data.

A methodology for risk measurement can be based on any statistically ac-
ceptable time-series model capable of capturing these stylized facts and an
appropriate risk measure.

Apart from the full distribution modeling, there exists another method
for modeling extreme events. It is based on the extreme value theory (EVT)
developed to model extreme events in nature, such as extreme winds, tem-
peratures, and river levels, and provides a model only for the tails for the

2See [Kim et al.| (2008) and [Samorodnitsky and Grabchak| (2010).



distribution. |Embrechts et al| (1997) provide applications in the field of
insurance and finance.

In the post-crisis era, while on the surface there seems to be universal
agreement that financial assets are indeed fat-tailed and that investment
managers must take extreme events into account as part of their everyday
risk management processes, the attitude in the academic circles is not as uni-
form. There are constructive efforts to identify factors explaining tail events
which can, potentially, be hedged (see Bhansali (2008))), or verify whether
the observed dynamics in correlations during market crashes are not artifacts
of the implicit assumption of normality (see Campbell et al.| (2008)). Yet,
in stark contrast, there are papers such as |Esch| (2010)) suggesting fat-tailed
models should be ignored in favor of Gaussian-based models on the grounds
of parsimony. While from a statistical viewpoint simpler models explaining
all stylized facts of the data are preferred to more complex models, represen-
tativity should not be sacrificed for simplicity. In other words, models should
be as simple as possible but not any simpler.

The paper is organized in the following way. Section [2 discusses whether
non-Gaussian models in general are really needed. Sections |3] and 4] focus on
the two common techniques for modeling extreme losses. Finally, Section
discusses general techniques for model selection.

2 Are non-Gaussian models needed?

Since fat-tailed models challenge well-established classical theories, there has
been a natural resistance towards them both in academia and in the practice
of finance. The resistance is usually not rooted in doubts whether fat-tails
exist in the real world; first, empirical research has firmly established this
fact and, second, the fresh memories of the recent financial crisis are food
for thought for those in denial. Rather, it is based on pragmatic reasoning
which can be summarized in the following two statements: (i) the classical
models are preferred because any attempt to employ a non-Gaussian model
necessarily results in huge estimation errors which introduce additional un-
certainty and outweigh the benefits and (ii) the observed fat tails can be
explained through Gaussian-based classical models. In this section, we con-
sider in detail each of these statements.



2.1 Estimation errors and non-Gaussian models

The discussion of estimation errors and non-Gaussian models has two aspects
and we draw a clear distinction between them. The first aspect concerns ap-
plication of higher-order moments in order to account for a potential skewness
and excess kurtosis which are two geometric characteristics of the return dis-
tribution representing deviations from normality. The usual approach is to
take advantage of the classical statistical measures of skewness and kurtosis
and to use them directly in an extension of the classical mean-variance anal-
ysis for portfolio construction (see Martellini and Ziemann| (2010))) or to use
them for the purpose of value-at-risk (VaR) estimation through a moment-
based approximation known as the Cornish-Fisher expansion. It is important
to note that this approach is not related to a fat-tailed distribution and is
non-parametric in nature. Loosely speaking, the goal is to describe devia-
tions from normality in geometric terms using two descriptive statistics in
addition to mean and volatility.

The criticism of this approach summarized by |Esch (2010)) is basically
centered on the fact that the classical estimators of skewness and kurtosis
exhibit significant variability to the input sample and, therefore, reliable esti-
mation is difficult. Martellini and Ziemann| (2010) extend the discussion into
a multivariate setting arguing that the curse of dimensionality exacerbates
further the estimation problem.

The instability of the classical estimators is a well-known problem in the
field of statistics and alternative robustified estimators have been developed.
As noted by Martellini and Ziemann| (2010), one possible approach in an asset
allocation context is to introduce a structure in the covariance, co-skewness
and co-kurtosis of asset returns by means of a factor model which reduces
sampling error at the cost of specification error. Also, shrinkage estimators
can be considered as they provide an optimal trade-off between sampling and
specification error. Finally, as far as the one-dimensional problem of skew-
ness and kurtosis estimation of a single asset is concerned, there are robust
quantile-based estimators which are much more reliable than the classical
estimators.

Dismissing the non-parametric approach on the basis of the properties of
classical estimators for skewness and kurtosis is a hurried decision. [Martellini
and Ziemann| (2010) conclude that there can be a significant value added in
asset allocation decisions if the estimation problem is handled properly.

The extension of the mean-variance analysis with skewness and kurto-



sis is, essentially, based on a higher-order Taylor series approximation of
expected utility and is well-motivated by theory. However, employing the
non-parametric method for downside risk estimation leads to other difficul-
ties. From a conceptual viewpoint, while skewness and kurtosis do describe
deviations from the Gaussian distribution in geometric terms, they do not
focus on the downside of the return distribution. The described deviations
from normality more or less concern the central part of the distribution and
there are no reasons to believe that a skewed distribution with an excess kur-
tosis will better describe extreme losses. For any distribution, skewness and
kurtosis represent two numbers and it is impossible to describe the richness
of the possible shapes of the tail behavior only in terms these two numbers.

As a result, for the purposes of risk estimation it is better to rely on other
techniques especially when quantiles deep in the tail are involved. These
techniques involve assuming a fat-tailed model that can describe the tail of
the empirical distribution and bring up the second aspect of the discussion
on estimation errors and non-Gaussian models. Fat-tailed models have pa-
rameters that are related to their tail behavior and skewness in addition
to the mean and scaleE] parameters meaning the number of parameters of
a fat-tailed distribution exceeds the number of parameters of the normal
distribution which results in additional complexity. The common argument
summarized by Esch| (2010) is that the notion of parsimony dictates simpler
models are better because complexity may turn out to be redundant which
is not easily detectable in-sample.

This is a very general philosophical argument which is counter-productive
if used without further analysis. First, additional complexity may be needed
in order to explain observed facts and this holds not only for finance but for
the realm of science in general. If skewness and fat-tails are observed in the
real world, it is only natural to choose a family of distributions that can take
into account the empirical facts at the cost of introducing two additional
parameters. Model selection techniques can be employed to assess whether
the improvement of the extended model is statistically significant.

Second, it is incorrect to think that fat-tailed models are alternatives to
the Gaussian model. In fact, most classes of fat-tailed distributions contain
the Gaussian distribution as a special case. In this sense, they truly extend
the framework and if the data is Gaussian, then the model would recognize
this fact. There are statistical techniques for hypothesis testing that can

3Volatility describes the “scale” of the normal distribution.



verify if the fitted parameters of the fat-tailed model are significantly different
from the parameter values identifying the normal distribution. The labels
“non-Gaussian” and “fat-tailed” as opposed to “Gaussian” and “non-fat-
tailed” are supposed to reflect the underlying properties and not to imply
that these models cannot co-exist in a more general framework.

From this perspective, the Gaussian model itself represents a significant
restriction that can lead to overly optimistic risk numbers in times of crashes
and realistic numbers in ordinary market conditions. Thus, as far as the
modeling philosophy is concerned, it is better to start with a more general
model and restrict it only if the impact of the “noise” coming from the
additional complexity outweighs the benefits.

2.2 Explanations of fat-tails through Gaussian-based
models

The main argument in this section is related to the last argument of the pre-
vious section — in the light of a non-explained empirical fact, it is preferable
to try to describe it first with the available tools before increasing the model
complexity.

There are two main approaches to explain fat-tails through Gaussian
based models. First, fat-tails appear because the volatility of asset returns is
dynamic. Therefore, looking at the unconditional distribution as described
by histogram plots or kernel density plots we can see heavy tails but they
are mostly due to the time varying volatility. Second, fat-tails appear be-
cause asset returns depend in a non-linear fashion on other factors which are
distributed according to a Gaussian law.

Empirical research has firmly established the fact that volatility clustering
is a stylized fact of asset returnsf Different econometric models have been
suggested to explain the time varying volatility and the most widely used ones
are the GARCH-type models. These econometric models can be regarded as
filters that transform the empirical data by explaining certain phenomena and
produce new data, also known as residual, which is more homogeneous. As
a consequence, it is possible to run a statistical test on the residual to verify
if explaining the volatility clustering effect leads to a Gaussian distribution.
Empirical research has shown even though the residual appears to be less

4For an empirical research, see for example |Akgiray| (1989).
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Exhibit 1: The degrees of freedom parameter of the residuals of a time-series
model fitted on the returns of the constituents of S&P500.

fat-tailed than the original data, it is not Gaussian[]

We illustrate this behavior in an empirical calculation which includes the
stocks in the S&P500 universe during the 3-year period from January 1, 2007
to November 1, 2010. We fitted a time series modelf| to clean the clustering
of volatility effect assuming the classical Student’s ¢ model on the residual.
The degrees of freedom (DOF) parameter, which governs the tail behavior,
is shown on Figure [ The smaller the value is, the heavier the tails are. If
DOF has a value of about 30 and above, it can be argued that the Student’s
t distribution is close to the normal distribution.

We calculated that 27% of all stocks have a DOF above 7 and 13% have
a DOF below 4 indicating a diverse tail behavior. These results agree with
a similar calculation for the same universe done for a different time period,
see Rachev et al| (2010). Figure [l demonstrates that the time variations
in the volatility cannot explain the fat-tailes observed in the unconditional

See Rachev and Mittnik (2000) and the references therein for extensive econometric
studies.
6The time series model is an ARMA(1,1)-GARCH(1,1) model.



distribution of stock returns. i.e. we find significant tail thickness in the
residual even though the time-series model captures the clustering of the
volatility effect.

Even though asset returns do not seem to be conditionally Gaussian,
GARCH-type models are a very useful tool because they can describe the
time structure of volatility. Volatility, or more generally the scale param-
eter of the distribution, is an important factor in risk estimation because
it affects all quantiles of the return distribution including the very extreme
ones. Therefore, any probabilistic model for risk estimation should include a
GARCH-type component.

The argument that, hypothetically, the fat-tailed behavior of asset returns
can be explained through non-linear factor models and, therefore, fat-tailed
distributions are redundant is weak without any empirical justification that
such factor models can be reliably fitted and that the factor returns are indeed
normal. This argument should be considered on a case-by-case basis and not
generally.lz] Certainly, a good non-linear factor model (or linear one for that
matter) is a powerful tool to identify risk exposures and is instrumental
for portfolio risk management purposes. The structure provided by such a
factor model is a useful piece of information in addition to describing the
shape of the portfolio return distribution. However, if it turns out that the
factor model is not reliable because of low explanatory power or if our goal is
only risk measurement, then having a good description of the (conditional)
distribution of portfolio returns is sufficient.

Non-linear factor models represent a big family of diverse models. There
are three basic types models depending on how non-linearity is introduced
— (i) non-linear in the factors but linear in the parameters, (ii) non-linear in
both the factors and the parameters, and (iii) no particular functional form
of the non-linearities, e.g. a kernel regression. From a parsimony standpoint,
it is very easy to end up with a model that overfits the data which does not
imply that non-linear factor models should be disregarded. This is a class of
techniques that can be helpful and should be used very carefully bearing in
mind the potential issues.

Rachev et al.| (2010)) illustrate the time variations of tail thickness in the
daily returns of the DJIA index from October 1997 to October 2009. The

"The term non-linear factor model is quite general and without a specification of the
non-linear function defining the relationship is of no use. In fact, any random variable
can be represented as a non-linear factor model of factors having arbitrary pre-specified
distributions.



example indicates that tail thickness may increase in times of crashes along
with volatility implying that factors unexplained by the time-series model
may impact downside risk. Unless these factors can be explained completely
by means of linear or non-linear factor models, it is important to adopt a
fat-tailed model which can provide a reasonable statistical description of the
data.

3 Full distribution modeling

Apart from the non-parametric approach based on higher-order moments,
there are two approaches for modeling the tails of the return distribution.
One of them is to assume fat-tailed tailed distribution and the other one
is based on EVT. The two approaches are different in nature. A fat-tailed
distributional assumption represents a model for the entire distribution while
EVT-based models are designed to describe the maximum loss over a given
horizon meaning that they are designed to describe the extreme tail only.

As mentioned before, a GARCH-type model for the scale of the return dis-
tribution is of crucial importance. Therefore, the two approaches mentioned
in this section have to be applied to the residual produced by applying the
GARCH filter to the observed asset returns. In this section, we consider the
full distribution modeling approach represented by two Student’s ¢ distribu-
tion and tempered stable distributions.

3.1 The Student’s t distribution

First introduced in 1908, the Students ¢ distribution is probably the most
commonly used fat-tailed distribution as a model for asset returns. Like the
normal distribution, classical Students ¢ densities are symmetric and have a
single peak. Unlike the normal distribution, Students ¢ densities are more
peaked around the centre and have fatter tails.

This property is illustrated on Exhibit [2| In fact, the normal distribution
is a special case when the DOF parameter approaches infinity. For practical
purposes, however, the plot indicates a very small difference for a DOF of
30. While this property makes the Student’s ¢ distribution acceptable for
asset returns modeling, the real reason behind its widespread use is its ease
of application — numerical methods are easily implementable and are widely
available.

10
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Exhibit 2: The density of Student’s ¢ distribution for different choices of the
DOF parameter.

We noted that it is unreasonable and potentially dangerous to accept the
Gaussian distribution simply on the grounds of parsimony without any sta-
tistical analysis. In a similar fashion, fixing the tail thickness to a given value
for all assets makes little sense. A risk estimation model based on Student’s
t distribution with the DOF parameter fixed to 5 is suggested by [Zumbach
(2006). Even though the values of the DOF parameter calculated for the
S&P 500 universe on Exhibit [1] imply that an average value of 5 is perhaps
reasonable, fixing the DOF parameter leads to a significant limitationf] - it
does not allow for a smooth transition between Gaussian data and fat-tailed
data. In contrast to the Gaussian model which is overly optimistic in times
of crashes, this model will significantly overestimate the risk for assets with
returns that are close to being normally distributed since it fails to account
for another stylized fact — tail thickness varies between assets and across
time.

The volatility in the model suggested by |Zumbach| (2006) is estimated by
applying weights to the observed returns with a logarithmic or exponential

8The motivation is given in Section 4 of |[Zumbach| (2006).
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decay based on a predefined parameter | This forces the relative importance
of the observations in the past to be the same for all risk drivers and across
all time periods. While this universal parameter makes these models simpler
and easier to grasp, there is an important trade-off between simplicity and
precision: these models are less accurate and only work “on average” in a
universe of risk drivers. Even though the approach in Zumbach| (2006|) devi-
ates from the traditional GARCH-type framework, an implementation with
the classical Student’s t distribution for the residual without the deficiency of
fixing the DOF parameter is available, for example, in the GARCH toolbox
of MATLAB.

Finally, the classical Students ¢ model is symmetric. In cases where there
is a significant asymmetry in the data, it will not be reflected in the risk
estimate.

3.2 Tempered stable distributions

As noted in the introduction, the class of stable distributions has a special
place among non-Gaussian full distribution models. It was suggested as a
model for asset returns because it contains the normal distribution as a spe-
cial case sharing a remarkable property — only this class of distributions can
approximately describe the behavior of a stochastic system influenced by
many small, regular, and independent random factors. Since price changes
are driven by many random factors, it is reasonable to assume that stable
distributions could represent a model for their approximate behavior (see
Rachev and Mittnik| (2000))). This was the reason the stable Paretian hy-
pothesis was suggested in the 1960s.

Like the Students ¢ distribution, stable Paretian distributions have a pa-
rameter responsible for the tail behavior, which is called the tail index or
index of stability. In contrast to the DOF parameter, the index of stability
is between zero and two. The closer it is to two, the more Gaussian like the
distribution is; smaller values of the index of stability imply a fatter tail.
Unlike the Students ¢ distribution, stable distributions allowed for skewed
representatives, see Exhibit [3]

The two empirical inconsistencies with the stable Paretian hypothesis is
that it implies infinite variance for asset returns and a tail behavior which

9An example is a decay parameter of the equally weighted moving average method
equal to 0.94.
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Exhibit 3: The density of the stable distribution for different choices of tail
index a and with the skewness parameter fixed to -0.7.

does not change with the return frequency. Therefore, the good results re-
ported in empirical studies seem paradoxical (see Samorodnitsky and Grabchak
(2010)). Efforts to obtain classes of distributions which allow for aggrega-
tion across frequencies, have a finite volatility and do not deviate much from
the shape of stable distributions lead to the development of tempered stable
distributions. In a nutshell, tempered stable distributions are derived from
the class of stable distributions through a process called tail tempering. Tail
tempering is achieved by modifying only the tails of stable distributions so
that they remain thicker than the Gaussian tails but do not lead to an in-
finite volatility. The technique is described in [Kim et al.| (2008), Kim et al.
(2010), and Bianchi et al.| (2010]).

Even though modifying the natural tail behavior of stable distributions
may seem artificial, the idea behind the tail tampering technique is based
on solid scientific grounds and is related to how temporal aggregation works.
Generally, lower frequency logarithmic returns can be represented as sums of
relatively more irregular higher frequency logarithmic returns. If we think of
the Gaussian behavior of the lower frequency return as some sort of a limit

13



behavior, then an explanation for the change in the tail behavior can be the
convergence rate to that limit. For example, monthly returns and weekly
returns can be represented as sums of daily returns, the only difference is in
the number of summands. Intuitively, the convergence rate would be faster if
there are more summands (higher vs lower frequencies) which are also more
regular (normal vs extreme market conditions).

The tail tempering technique arises from results in probability theory
dealing with the problem of estimating the rates of convergence in limit
theorems indicating that the shape of the distribution of the sum looks like
a stable distribution at the center but does not have as heavy tails, see
Samorodnitsky and Grabchak] (2010).

4 Extreme value theory

EVT has been applied for a long time when modeling the frequency of ex-
treme events, including extreme temperatures, floods, winds and other nat-
ural phenomena. From a general perspective, extreme value distributions
represent distributional limits for properly normalized maxima of indepen-
dent random quantities with equal distributions, and therefore can be applied
in finance as well, see Embrechts et al.| (1997). In contrast to the other distri-
bution families mentioned in the introduction, EVT represents a model for
the tail of the distribution only. Therefore, in practice, one needs to combine
EVT with a model for the remaining part of the distribution if needed.

The method behind EVT can be intuitively described in the following
way. Consider a sequence of returns at a given frequency. The maximum
loss can be approximately described through a limit distribution known as
the generalized extreme value distribution (GED). Another way to model
extreme losses is to consider the exceedances over a high threshold. EVT in-
dicates that asymptotically, as the high threshold increases, the exceedances
can be described by the generalized Parreto distribution (GPD).

There are many empirical studies applying EVT directly to the return
time series ignoring the clustering of volatility effect (see, for example, Marinelli
et al.| (2007) and [Sheikh and Qiao (2009)). While at times this may be a
reasonable simplification for shorter time intervals, in practice the stylized
facts mentioned in the introduction can represent significant deviations from
hypothesis that returns are independent and identically distributed (iid). As
a consequence, the stylized facts have to be modeled separately and EVT

14
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Exhibit 4: The daily losses of S&P500 from November 3, 2000 to November
5, 2010 and the maxima of losses in blocks of 6 months.

should be applied to the residual of the time series model for which the iid
assumption is more adequate.

The two limit distributions, GEV and GPD, give rise to two approaches
of EVT-based modeling — the block of maxima method and the peaks-over-
threshold method.

4.1 The block of maxima method

The idea behind the block of maxima approach is essentially to take ad-
vantage of the limit behavior described by GEV. We divide the data into
consecutive blocks of equal size and then focus on the series of the maxima
of the returns in these blocks. As a next step, we fit the GED to the series
of maxima, which can be performed via the method of maximum likelihood.

The block of maxima method is illustrated in Exhibit 4] with the daily
losses of S&P500 in the period between November 3, 2000 and November
5, 2010 with the size of the block equal to 6 months. This example also
illustrates that applying naively EVT directly to the time series of losses
may lead to difficulties. The maxima of losses between 2003 and 2007 occur
in a low volatility environment while the ones in 2008 occur in a very high

15



volatility period and, therefore, they are not generated by one and the same
distribution.

There are two practical problems with the block of maxima method: (i)
the choice of the size of the blocks and (ii) the length of the time series.
While for daily financial time series, the size of the block is recommended
to be three months, six months, or one year, there is no general rule of
thumb or any formal approach which could suggest a good choice. Even
these recommendations are rather arbitrary because the size of the resulting
sample of maxima can vary up to four times which naturally can exercise a
big impact on the estimates.

Concerning the second problem, one needs a very large initial sample in
order to have a reliable statistical estimation. In academic examples, using
20-30 years of daily returns is common, see, for example, [McNeil et al.| (2005).
However, from a practical viewpoint, it is arguable that observations so far
back in the past have any relevance to the present market conditions.

4.2 The peaks-over-threshold method

The peaks-over-threshold (POT) method arises from the limit result leading
to GPD. Like the block of maxima method, the parameters of GPD can
be fitted using only information from the respective tail. The process is
straightforward — choose a value for the high threshold and fit GPD to the
part of the sample which exceeds the threshold.

The approach is illustrated in Exhibit [5| which also shows why applying
POT directly on the returns series is unreasonable when there is a significant
clustering of volatility — the larger exceedances are from a high volatility
environment and cannot be compared to the smaller exceedances in normal
markets. Further on, they appear in clusters which is in conflict with the iid
assumption.

There are two big challenges stemming from this restriction: (i) a very
large sample is needed to get a sufficient number of observations from the
tail, which is also present in the block of maxima method, and (ii) we need
to know where the body of the distribution ends and where the tail begins
in order to set a good value for the threshold.

Concerning the sample size, academic publications indicate that minimum
requirements are in the range of 5,000 to 10,000 observations. However, it
should also be noted that using a sample this large minimizes any current fat-
tailed market behavior and would only be suitable for long-term projections.
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Exhibit 5: The daily losses of S&P500 from November 3, 2000 to November
5, 2010 and the exceedances over a threshold of 3%.

For financial time series, where the standard time window for risk estimation
is two years of daily data, a sample size of just 500 observations is far too
short to ensure an accurate GPD fit. |Goldberg et al.| (2008)) suggest 1,000
days, with approaches to generate synthetic data where enough observations
are not available.

The second issue may seem easy to resolve by resorting to statistical meth-
ods that would indicate where the tail begins. However, no reliable methods
of this type exist. Typically, this high threshold is chosen subjectively by
looking at certain plots, such as the Hill plot or the mean excess plot, which
are standard in EVT. As a consequence, identifying the threshold between
the body and the tail is a matter of subjective choice based on visual in-
spection, which cannot be achieved on a large scale. Kuipers test has been
suggested in |Goldberg et al| (2008)) as a numerical method for determining
the optimal threshold selection. However, this test is very difficult to au-
tomate for large universes, because the resulting optimization problem does
not have good optimality properties, with the global minimum being hard
to find. The fact that the choice of this threshold has a great impact on the
parameter estimates of GPD and, therefore, on the final risk estimates in
smaller samples is acknowledged in |Goldberg et al.| (2008)) and |Castillo and
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Daoudji| (2008)).

In using GPD, one is always faced with the classical tail-estimation trade-
off problem. For the GPD estimates to be unbiased, they must be fit with
the largest possible threshold. Unbiased estimators are obtained when the
threshold is infinity. This implies that one should use a very small number
of extreme observations from the original sample. On the other hand, using
such a small number of observations drastically increases the variance of the
estimators. GPD estimation fits become more of an art than a science in
balancing this trade-off between being unbiased and small variance of the
estimators. It should be noted that fitting the parameters of GEV has the
same deficiencies, see Hull and Welsh| (1985).

5 Model selection

Having discussed different classes of fat-tailed models which can account for
the observed fat-tailed behavior of asset returns, the pragmatic mind would
be interested in criteria for model selection. A few general rules can be
considered which can eliminate inappropriate choices. First, models which
allow for fat-tailed representatives and also for light-tailed representatives
are more appealing compared to models with a fixed tail thickness, e.g. the
one suggested in Zumbach| (2006). In this way, if the empirical tail is close
to normal the model would be able to recognize it. Rejecting a richer model
only on the grounds of parsimony as argued in [Esch| (2010) makes sense only
after an extensive statistical analysis.

Second, choosing a model may depend on the particular problem we are
trying to solve. From a theoretical viewpoint, some models arise from limit
theories in probability theory which make them suitable for some types of
problems. Operational risk, for example, requires loss estimation deep in
the tail, e.g. VaR at the 99.9% level, which makes EVT-based models good
candidates. They have to be applied carefully bearing in mind the caveats
mentioned in Section [} Full distribution models are more appropriate in
market risk estimation when the left tail of the portfolio return distribution
is used in the calculation of multiple quantile levels some of which are not
in the extreme tail, e.g. VaR at 95%, 99%, and 99.5%. Tempered stable
distributions represent an appealing choice for the residual process in a time-
series model but other distributions can also be used.

Third, back-testing studies should be considered when choosing between
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different models. They can identify certain models as overly optimistic or
overly pessimistic. [Rachev et al. (2010 consider a back-testing of VaR at
99% confidence level of DJIA in which Gaussian, Student’s ¢, stable and EVT
models are compared after cleaning the clustering of volatility effect through
a GARCH model. The back-testing study indicates that EVT and Student’s
t with the DOF parameter fixed to 5 as suggested in |Zumbach| (2006) lead to
overly conservative VaR models. Not surprizingly, the Gaussian model, on
the other hand, turns out to be overly optimistic. Additional analysis and a
comparison in a more simplified setting is available in Marinelli et al.| (2007).

Having selected a distributional model, one has to calculate confidence
intervals of the risk statistics through non-parametric bootstrapping which
provides a measure of sensitivity of the output of the model to the input sam-
ple. The same exercise can be repeated with the parameters of the fat-tailed
distribution which will provide insight into the variability of the estimator.
If the Monte Carlo method is involved, then the Monte Carlo variability of
the risk statistics has to be explored as well in order to tune the number of
generated scenarios. Studies of this type help identify factors that may cause
instabilities and situations in which the model may fail.

6 Conclusion

After the financial meltdown of 2008, it seems the existence of fat tails in
asset returns and the importance of this phenomenon for downside portfolio
risk estimation is getting more widely recognized by practitioners. Academic
literature is abundant in models that can take into account fat tails but
this stylized fact should not be considered in isolation. A realistic model for
asset returns should take into account all statistically relevant stylized facts.
The best approach is to choose an extended model that includes the normal
distribution as a special case and then test its performance on the real data.
The more theoretical question of whether the chosen model is the best one
among all other families of fat-tailed models is not so essential as there may be
different families of fat-tailed distributions which are statistically equivalent
as far as the particular modeling problem is concerned.
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