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Abstract

A number of recent studies have reported the phenomenon of “software aging”, char-

acterized by progressive performance degradation and/or an increased occurrence rate of

hang/crash failures of a software system due to the exhaustion of operating system resources

or the accumulation of errors. To counteract this phenomenon, a proactive technique called

“software rejuvenation” has been proposed. It essentially involves stopping the running

software, cleaning its internal state and/or its environment and then restarting it. Software

rejuvenation, being preventive in nature, begs the question as to when to schedule it. Pe-

riodic rejuvenation, while straightforward to implement, may not yield the best results,

because the rate at which software ages is not constant, but it depends on the time-varying
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system workload. Software rejuvenation should therefore be planned and initiated in the

face of the actual system behavior. This requires the measurement, analysis and prediction

of system resource usage.

In this paper, we study the development of resource usage in a web server while sub-

jecting it to an artificial workload. We first collect data on several system resource usage

and activity parameters. Non-parametric statistical methods are then applied for detect-

ing and estimating trends in the data sets. Finally, we fit time series models to the data

collected. Unlike the models used previously in the research on software aging, these time

series models allow for seasonal patterns, and we show how the exploitation of the seasonal

variation can help in adequately predicting the future resource usage. Based on the models

employed here, proactive management techniques like software rejuvenation triggered by

actual measurements can be built.

Index terms: Software aging, software rejuvenation, Linux, Apache, web server, perfor-

mance monitoring, prediction of resource utilization, non-parametric trend analysis, time series

analysis
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1 Introduction

It has now been well established that software faults are the major cause of computer system

failures [19, 33]. While there are many tools and techniques for supporting software developers

and testers it is practically impossible to guarantee that software products do not contain any

residual faults at the time of their release.

There are two main approaches to coping with the unavoidable presence of software faults.

On the one hand, one can strive for efficient ways of recovering the software systemafter a

failure has occurred, e.g. via fine-grained “microreboots” [7] of only the affected application

components.

On the other hand, if the failure rate of software should be increasing, it can be worthwhile

to implement some sort ofpreventivemaintenance. Indeed, researchers have recently reported

and studied the fact that software applications executing continuously for a long period of time

show a degraded performance and/or an increased occurrence rate of hang/crash failures. This

phenomenon has been called “software aging” [11]. Some common causes of software aging are

memory leaks, unreleased file descriptors and numerical round-off errors. In order to counteract

this problem, Huang et al. [23] proposed the technique of software rejuvenation, which involves

occasionally stopping the software application, removing the accrued error conditions and then

restarting the application in a clean environment. This process removes the accumulated errors

and frees up or defragments operating system resources, thus preventing, in a proactive man-

ner, unplanned and potentially expensive future system outages. Unlike downtime caused by

sudden failure occurrences, the downtime related to software rejuvenation can be scheduled at

the discretion of the user/administrator, e.g., for the middle of the night. Meanwhile, rejuve-

nation has been implemented in various types of systems, like billing data collection systems

[23], telecommunication systems [4], transaction processing systems [8], cluster servers [9]

and spacecraft systems [34]. For a recent introduction to software rejuvenation, see [5]. Many

research papers on this topic can be found at [10].

In the face of an accumulation of errors and an increasing failure rate on the one hand and

the direct and indirect costs of rejuvenating a software system on the other hand, an optimal

timing of software rejuvenation should be sought.

Approaches used for analyzing and solving this optimization problem can be grouped into

model-basedones andmeasurement-basedones.

Themodel-basedapproaches are aimed at building analytic models of system degradation

and solving these models for determining the effectiveness of software rejuvenation as well as

for deriving optimal rejuvenation schedules.

A simple degradation model was introduced by Huang et al. [23], who assumed that once a

software system switches to the failure probable state the time until rejuvenation is carried out

follows an exponential distribution. In order to deal with periodic rejuvenation and deterministic

intervals between successive rejuvenations, Garg et al. [15] applied a Markov regenerative Petri
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net model. As a response to criticism of the coarse nature of these early models, Bobbio et al. [6]

took into account that system performance can degrade in a fine-grained way; they modeled the

degradation process as a sequence of additive random shocks. Garg et al. [16] used a queuing

model for analyzing two rejuvenation policies (purely time based vs. instantaneous load and

time based) in a transactions based software system. Dohi et al. [12, 13, 14] formulated software

rejuvenation models as semi-Markov reward processes, which do not depend on specific failure-

time distributions. All models mentioned so far only dealt with single-level rejuvenation, i.e.

one kind of rejuvenation (usually full system restart). Vaidyanathan et al. [35] considered two

kinds of preventive maintenance in operational software systems. Likewise, Xie et al. [38]

generalized the semi-Markov model presented in [14] by introducing the possibility of service-

level rejuvenation in addition to system-level rejuvenation.

The basic idea ofmeasurement-basedapproaches is to directly monitor attributes that are

subject to software aging. For example, in a system with memory leaks not all of the memory

allocated to a task is necessarily released after its completion, leading to an increasing trend

in memory usage. Based on periodically collected data, measurement-based approaches try

to assess the current “health” of the software system and to obtain predictions about possible

impending failures due to resource exhaustion.

Garg et al. [17] analyzed the exhaustion of resources like real memory and swap space in

a network of UNIX workstations. All those metrics, observed on three computers, showed a

significant trend over time. Using a non-parametric technique, Garg et al. determined the global

trend and calculated the estimated time to exhaustion via linear extrapolation for each resource.

Vaidyanathan and Trivedi [36] took into account the possibly differing rates of resource deple-

tion over time by identifying eight states of system workload, and they determined an individual

trend for each of them. Modeling the workload states as a semi-Markov chain, they were able

to calculate the expected development of resource exhaustion. However, their predictions were

again linear functions of time. Castelli et al. [9] examined software aging in a cluster of servers.

For the prediction of resource exhaustion they fitted a (piecewise) linear trend to the measure-

ments taken within a fitting window, or to the logarithm of these measurements.

None of these previous measurement-based approaches explicitly models seasonal patterns

occurring in the measurement data. The predictions of future resource usage (or its logarithm)

are linear functions of time.

A completely different approach to the analysis of aging in memory resources was chosen

by Shereshevsky et al. [32]. These authors did not model and predict memory utilization, but

they monitored the local rate of fractality of the system parameters via the Hölder exponent and

concluded that the second abrupt increase in this measure indicates an imminent system crash.

In this paper, we analyze resource usage data collected on an Apache web server. A web

server is a typical long running software system which should ideally operate without inter-

ruptions. However, due to unfixed bugs in the application or system software the performance

4



is prone to degrade over time. System administrators usually reboot the whole system or just

restart the web server program occasionally to deal with this problem. Most administrators

set the interval between restarts according to experience or restart the web server only after it

crashes. Since the downtime of business-critical web services like online sales directly trans-

lates into financial losses, a better understanding of web server aging leading to a more appro-

priate scheduling of software rejuvenation is crucial.

The main contribution of this paper is the detailed examination of the development of re-

sponse time and memory usage of an Apache web server subjected to a synthetic load for 25

days. Our analyses reveal the influence of settings related to both the operating system as well

as Apache itself on the aging phenomenon. Unlike previous research in which the predictions

of resource usage were linear functions of time even in the presence of seasonality, we parsimo-

niously model the existing seasonal pattern and exploit it for forecasting the future behavior.

The rest of the paper is organized as follows: In Section 2, we discuss the experimental setup

as well as the experiments carried out in our study and describe the data sets collected. The

resource usage data is then statistically analyzed in Section 3. Section 4 contains concluding

remarks and discusses possible directions for future research.

2 Experiments

2.1 Experimental setup

Apache is the most popular web server software currently being used [29]. Our experimental

setup consists of a server running Apache version 1.3.14 on a Linux platform and a client

connected via an Ethernet local area network. The components and the system structure are

illustrated in Figure 1. For collecting resource usage information of the web server we make

use of the fact that in the Linux operating system all the system information is stored in the

/proc virtual file system.

For example, the file/proc/stat contains information about CPU usage, disk I/O, paging,

swap space, interrupts, context switches and processes. We employ a Linux monitoring tool

called procmon , developed in our research group by Rajiv Poonamalli, to monitor the web

server. procmon periodically extracts information from the/proc file system and stores it

in a designated file in a certain format. The tool settings, such as the interval of extracting

information and the parameters to monitor are specified in a configuration file.

In our experiments, we usehttperf [28] in order to generate requests with constant time

intervals between two requests. Each request accesses one of five specified files of sizes 500

bytes, 5 kB, 50 kB, 500 kB and 5 MB from the server. The corresponding probabilities of

accessing the files are 0.35, 0.5, 0.14, 0.009 and 0.001, respectively.
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Figure 1:Experimental setup

httperf is not only a workload generator, but it can also be employed for monitoring per-

formance information. The measurements provided include reply rate, response time and the

number of timeouts. While the reply rate is a fundamental index of capacity, response time and

timeout rate are important in measuring the performance of the web server.

2.2 Determining the capacity of the web server

With our first experiment we determine the capacity of our Apache web server. For this end,

we observe its reply rate and timeout error rate while increasing the connection rate of requests

generated byhttperf until the web server is overloaded.

It should be clear that the web server capacity depends on its configuration. We study the

influence of two parameters with which Apache provides some features similar to software reju-

venation. First, if the configuration variableMaxRequestsPerChild is set to a positive value,

then the parent process of Apache kills a child process as soon asMaxRequestsPerChild

requests have been handled by this child process. By doing this, Apache “limits the amount of

memory that [one] process can consume by (accidental) memory leakage” and “helps reduce

the number of processes when the server load reduces” [1]. IfMaxRequestsPerChild is set

to its default value 0, then a process never expires, i.e., this value is really meant to represent

infinity.

A second parameter,MaxClients , sets the limit on the number of child processes that

can be running concurrently, i.e., the number of clients that can simultaneously connect to the

server. It acts as a brake to keep a runaway server from taking the system with it as it spirals

down. The default value of this parameter is 250.

Figure 2 depicts the results obtained for the default settings ofMaxRequestsPerChild

andMaxClients , 0 and 250, respectively. Above the peak at 390 replies per second, the reply

rate deviates from the connection rate. We therefore conclude that under the default setting, the

capacity of the web server is about 390 requests per seconds.

6



200 250 300 350 400 450 500
200

250

300

350

400

Connection rate

R
ep

ly
 r

at
e

200 250 300 350 400 450 500
0

50

100

150

Connection rate

T
im

eo
ut

 e
rr

or
 r

at
e

Figure 2:Capacity of the web server

In order to assess the impact of the two configuration parameters, we repeat the experiment with

different settings. The results shown in Table 1 indicate that decreasing eitherMaxClients or

MaxRequestsPerChild will eventually have adverse effects on the web server capacity.

The explanation of this behavior with respect to the former parameter is as follows: If

MaxRequestsPerChild is set to a smaller value, then the number of requests processed by

each child process quickly attains this maximum value even for a lower workload. As a con-

sequence, the Apache parent process has to kill and respawn child processes with a high fre-

quency, which increases the overhead on the system. Therefore, the capacity of the web server

decreases.

Table 1:Web server capacity under different configurations
MaxClients → 250 100 50 30

MaxRequestsPerChild ↓
0 (∞) 390 390 390 380

3000 390 390 390 380

1000 390 390 390 380

750 390 390 390 380

500 380 380 380 380

250 370 370 370 360
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This finding agrees with the results obtained by Arlitt and Williamson [3]. Their experiments

revealed that restricting the number of requests per child process can considerably decrease

the reply rate achieved by the Apache web server. The authors therefore concluded that the

configuration parameterMaxRequestsPerChild should only be changed to a non-zero value

if absolutely necessary. (Recall that a zero value corresponds to no limit on the number of

requests processed.)

If the second parameter,MaxClients , is set to a small value, then only a small number of

clients can connect simultaneously, and the possibility of dropping a request becomes larger.

Moreover, the processing rate of each child process needs to be increased to handle the work-

load, which results in a higher frequency of killing and respawning child processes. Both effects

lead to a lower server capacity.

During the following analyses, we set bothMaxRequestsPerChild andMaxClients to

their default values (0 and 250, respectively).

2.3 Collection of resource usage data

For collecting resource usage data over a long time period, we employ a shell program to run

httperf periodically. As the connection rate we choose a value of 400 requests per second,

which puts the web server in an overload state and should speed up software aging. Among

the system parameters of the web server monitored during a period of more than 3.5 weeks are

the response time of the web server (ResponseTime), i.e., the interval from the timehttperf

sends out the first byte of request until it receives the first byte of reply, the free physical memory

(FreePhysMem) and the used swap space (UsedSwapSpace). The three time series are shown

in Figures 3 to 5. Since the spacing between two consecutive data points is five minutes, each

time series consists of 7208 observations.

From Figure 5, it is obvious that swap space usage follows a seasonal pattern. In our statisti-

cal data analysis, we will need to account for this phenomenon. Searching for the reason of the

periodicity, further investigation reveals that the abrupt decreases in used swap space are related

to the log rotation, which by default is one of the routines started by thecron daemon on Sun-

day mornings at about 4:00 a.m. In the course of the archiving of the Apache access log files,

theHUPsignal is sent to the Apache parent process, triggering it to kill all of its child processes,

re-open any log files and spawning a new set of children to handle requests [2]. This means that

the system autonomously invokes a software rejuvenation mechanism by regularly killing the

Apache child processes even if theMaxRequestsPerChild parameter is set to zero.

Figure 5 also shows that significant increases in UsedSwapSpace often - but not always -

occur at fixed intervals. This is especially clear for the second week of data collection, about

130 to 300 hours into the experiment.
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Figure 4:Free physical memory
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Figure 5:Used swap space

Again, this pattern is caused by thecron daemon: Among the commands it invokes on a

daily basis by default is the update mechanism of the database used byslocate for quickly

searching for files in the system. Although the updating is started with a low priority, under

usual circumstances it would be finished within a short time. However, during our experiments

the web server is constantly in an overload state, since the request rate exceeds its capacity. As

a consequence, the memory requirements of the database update and (eventually) the process

itself are directed to the swap space. This explains, why the increases in UsedSwapSpace

are not noticeably accompanied by increases in FreePhysMem. Furthermore, the incidental

rejuvenation carried out once a week frees the resources for the execution and termination of

those processes that had been started but never finished throughout the week.

3 Statistical analysis of resource-usage data

3.1 Trend test and estimation

In our first analyses, we wish to determine if the data collected indicate that the response time

of the web server degrades or that the memory is depleted over time. Toward this end, we apply

a set of non-parametric statistical methods. Analyses to be used depend on whether seasonal

patterns are present in the respective time series examined.
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3.1.1 Data without a seasonal pattern

In this section we deal with the two time series showing no signs of seasonality, ResponseTime

and FreePhysMem (see Figures 3 and 4).

For testing the null hypothesis that a sampley1, y2, ..., yn does not exhibit a trend, Mann

[27] used a linear function of the test statisticS originally developed by Kendall [24] for testing

whether two sets of rankings are independent. The direct application ofS for our purposes

is known as the Mann-Kendall test for trend. In this context, the value of the test statistic is

computed as

s =
n−1∑

k=1

n∑

l=k+1

sgn(yl − yk),

where sgn(·) denotes the signum function. Of all
(
n
2

)
= n(n − 1)/2 pairs of observations

yk, yl (k < l), s counts all pairs for which the earlier observationyk is smaller thanyl and

subtracts the number of pairs for which the latter observation is smaller. While ans value close

to zero suggests that there is no trend in the data, a high absolute value of the test statistic

hints at the existence of a trend. For the calculation ofs, tied pairs, i.e., those pairs for which

yk = yl, are not taken into account. However, such tied pairs do influence the variance of the

test statistic. If the time series is composed ofo distinct sets of values, withtj observations in

thejth set, then the variance ofS is given by [25, p. 43]

Var(S) =
1

18


n(n− 1)(2n+ 5)−

o∑

j=1

tj(tj − 1)(2tj + 5)


 .

Under the null hypothesis the distribution ofS is always symmetric, and the expected value of

S is equal to zero. Moreover, forn approaching infinity, the distribution ofS converges to the

normal distribution. Allowing for a continuity correction [25, pp. 41–42], the value of the test

statistic

Z =
S − sgn(S)√

Var(S)
(1)

can be compared to the quantiles of the standard normal distribution in order to check whether

the null hypothesis of no trend in the data can be rejected.

The values ofZ calculated for the time series ResponseTime and FreePhysMem are listed

in Table 2.

Table 2:Trend test and estimation for ResponseTime and FreePhysMem
ResponseTime FreePhysMem

z 21.569 14.873

Estimated slope 0.061 ms/hr 8.377 kB/hr

95% confidence interval (0.055 ms/hr, 0.067 ms/hr) (7.287 kB/hr, 9.472 kB/hr)
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Both are considerably larger thanλ0.975 = 1.960, the 97.5% quantile of the standard normal

distribution. Consequently, the null hypothesis that the time series contains no trend can be

rejected in each case at an error level of5%. The positive signs of thez values show that the two

trends are increasing. In order to determine estimates for the slopes, we apply a non-parametric

procedure developed by Sen [30]. This method is not affected by outliers, and it is robust to

missing data. Like the calculation of the value of the test statisticS the approach focuses on all

pairs of data pointsyk, yl with k < l. For each of these pairs, the slopeqkl = (yl − yk)/(l − k)

is calculated. Sen’s slope estimate is defined as the median of then′ = n(n − 1)/2 slopes

obtained.

A two-sided100 · (1−α)% confidence interval for the estimated slope can be derived by the

procedure described in [18, p. 218]: After sorting then′ slopes in increasing order, the lower

limit of the confidence interval is given by the((n′ − cα)/2)th largest of these slopes, while

the upper limit is given by the((n′ + cα)/2 + 1)th largest slope, wherecα = λ1−α/2
√

Var(S).

Again,λ refers to the quantiles of the standard normal distribution.

Although the procedure is simple enough, its memory requirements are quite demanding

for our time series consisting ofn = 7208 observations, because almost 26 million slopes have

to be computed and sorted. The slope estimates and their respective95% confidence intervals

are shown in Table 2. As anticipated, after the calculation of the values of theZ statistic, the

estimated slope is positive for both ResponseTime and FreePhysMem.

For the former time series, the result is consistent with the symptoms of software aging:

On average, the response time as perceived by the user increases by about0.06 ms every hour.

The longer the web server has been operating, the more time it tends to need for reacting to a

request. With regard to the FreePhysMem time series, however, we would rather have expected

a decreasing trend. A possible explanation for the observed behavior is the fact that free physical

memory in the system cannot be lower than a certain threshold. Since the connection rate of

400 connections per second exceeds the capacity of the web server, the physical memory is

close to its lower limit from the very beginning of the experiment. Therefore, there is little if

any scope left for a further decrease in free physical memory. Rather, the system tries to free

some of the used physical memory. Indeed, the fluctuations in the time series (cf. Figure 4)

are much more drastic than if the web server is operated within its capacity, which hints at the

constant activities undertaken by the system to reclaim physical memory. The overall increase

in free physical memory may therefore be due to the successful paging out of inactive processes

initially blocking the resource.

In the plot of UsedSwapSpace an upward trend is clearly visible, although it is superimposed

with the seasonal pattern caused by the weekly “rejuvenation”. We will further investigate this

global trend in the used swap space in the next section.
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3.1.2 Data with a seasonal pattern

For seasonal data, Hirsch et al. [22] proposed a modified Mann-Kendall test. The main idea is

to separately treat the data of each of them seasons. From the subsample pertaining to theith

season, denoted byyi1, yi2, ..., yini, whereni is the total number of observations for this season,

the value

si =
ni−1∑

k=1

ni∑

l=k+1

sgn(yil − yik)

is calculated. Under the null hypothesis of no trend, the statisticSi is asymptotically normal

with variance

Var(Si) =
1

18


ni(ni − 1)(2ni + 5)−

oi∑

j=1

tij(tij − 1)(2tij + 5)


 ,

assuming that the data of theith season consists ofoi different values with the number of data

points taking thejth value given bytij.

If the null hypothesis is true, then theSi statistics are mutually independent, and their

sumS =
∑m
i=1 Si follows a normal distribution with expectation zero and variance Var(S) =

∑m
i=1 Var(Si). Therefore, the hypothesis can be tested by computing the value of the statisticZ,

defined according to equation (1), and comparing it to the respective percentiles of the standard

normal distribution.

Since the automatic “rejuvenation” carried out by the system takes place once a week, there

arem = 2016 seasons to consider. The calculation of the values of the2016 statisticsSi and

their variances leads to az of 68.443, which clearly indicates the existence of a positive trend

in the data.

According to van Belle and Hughes [37], a different trend test based on a rank order test

developed by Sen [31] is more powerful than the seasonal Mann-Kendall test. However, this

test requires an identical number of observations for each season. As a consequence, for our

data the computation can only be based on3 ·2016 = 6048 data points, while1160 observations

have to be discarded. Nevertheless, we did carry out this test and received a result similar to the

one of the seasonal Mann-Kendall test: The null hypothesis of no trend can be rejected at high

significance levels.

Like the Mann-Kendall test, Sen’s slope estimator can be adapted in the presence of a sea-

sonal pattern, cf. [18, pp. 227–228]. Again, them seasons are at first analyzed separately,

calculating the slopeqikl = (yil − yik)/(l − k) for each of then′i = ni(ni − 1)/2 pairs of data

pointsyik, yil (k < l) belonging to seasoni. The overall slope estimate is then the median of all

n′ =
∑m
i=1 n

′
i slopes. Withn′ given above and Var(S) computed as the sum of them variances

Var(Si), the100 · (1−α)% confidence interval for the slope estimate is derived in the same way

as described for the (basic) Sen slope estimator.

For the slope of UsedSwapSpace, the estimate as well as the 95% confidence interval are

listed in Table 3.
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Table 3:Trend test and estimation for UsedSwapSpace
UsedSwapSpace

z 68.443

Estimated slope 7.714 kB/hr

95% confidence interval (7.714 kB/hr, 7.786 kB/hr)

Due to ties in the data the lower bound is identical to the estimate itself. The results confirm that

the amount of swap space used tends to increase over time. The estimated slope is of the same

magnitude as the one for free physical memory shown in Table 2. In fact, its 95% confidence

interval is completely contained in the 95% confidence interval derived for the latter quantity.

This raises the question whether the system ages at all with respect to memory usage, because

the amplified usage of swap space could be explained by the swapping of unused processes from

the physical memory. However, the global trend incorporates the effects caused by the weekly

log rotation, which we discussed above in Section 2.3. Without the incidental rejuvenation

prompted by this mechanism, accumulated memory leaks related to the Apache child processes

would not be released, and the increase in swap space usage would be significantly higher.

3.2 Time series analysis

After the initial trend analysis, we now apply time series models to our observations. Our goals

are to gain further insight into the structure of the time series and to explore whether the seasonal

structure of swap space usage can be exploited for predicting future values.

A simple class of models for time series in which consecutive observations are correlated is

the autoregressive (AR) model. In an autoregressive model of orderp, each observationyt is

explained by thep previous values of the time series:

yt =
p∑

i=1

φiyt−i + ut,

where theφis are fixed parameters.

It is assumed that theuts, the typically unobservable deviations from the perfect autoregres-

sive relationship, are samples from a white noise process with zero mean and constant variance

σ2
U .

If the trend and the seasonal pattern of the time series analyzed are stable over time, they

can be modeled deterministically. One way to account for a seasonal structure of periodm is

via the inclusion of the coefficientsγ1, ..., γm, each representing the effect of one season. The

resulting model has the form

yt = α1b(t) +
p∑

i=1

φiyt−i +
m∑

j=1

γjdjt + ut, (2)
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with the dummy variabledjt being equal to one if thetth observation belongs to thejth season

and zero otherwise. While the parameterα1 needs to be estimated, the functionb(t) stands for

the known part of the deterministic trend component; possible choices includeb(t) = t and

b(t) =
√
t. An intercept termα0 must not be added to the model (2) since it would lead to

perfect multicollinearity [20, p. 118]. For the column vector of observations with transpose

yT = (y1, . . . , yn) the model can be written in matrix form as

y = Xα+Dγ + u, (3)

where

X =




b(1) y0 · · · y1−p
b(2) y1 · · · y2−p

...
...

. ..
...

b(t) yt−1 · · · yt−p



, D =




d11 · · · dm1

...
.. .

...

d1t · · · dmt


 ,

α = (α1, φ1, . . . , φp)
T , γ = (γ1, . . . , γm)T andu = (u1, . . . , un)T . If the observations spank

complete seasonal cycles, then the matrixD can be constructed by stackingk identity matrices;

i.e., withIm denoting anm ×m matrix with a diagonal of ones and off-diagonal elements of

zero,D = [ImIm · · · Im]T .

For the UsedSwapSpace data the period of the seasonal pattern,m, is equal to 2016. The es-

timation of (3) via the least squares method requires the inversion of the huge matrix[XD]T [XD],

consisting of(2017 + p) columns and the same number of rows. This task can be avoided by

carrying out a partitioned regression [20, pp. 26–27]: In a first step,y and each of the columns

in X are regressed on the dummy variables in the matrixD, and the residuals are determined;

in fact, this amounts to subtracting the seasonal means from all values. In a second step, these

residuals are used in a subsequent regression in order to calculateα̂. Based on this estimated

parameter vector as well as the seasonal means of the time series,γ̂ can then be obtained.

While parameter estimation is possible, modeling the seasonal pattern with2016 parameters

may not be the most parsimonious approach. As an alternative, trigonometric terms at the

seasonal frequenciesµj = 2πj
m

(j = 1, . . . , bm/2c) can be employed, modeling the seasonal

influence at timet by [21, p. 41]

bm/2c∑

j=1

(βj cos (µjt) + δj sin (µjt)) .

This formulation does not implicitly include the level of the time series; therefore, an intercept

α0 should be added to the model. If the summation overj runs from 1 tobm/2c (the largest

integer smaller than or equal tom/2), like in the previous expression, then the number of

parameters used for modeling the seasonal structure plus the level is equal tom, just like in

the dummy variable approach. However, it is often possible to make do with the lower-order

frequenciesj = 1, 2, ..., f < bm/2c. The resulting model in vector form is

y = X�α� +D�γ� + u, (4)
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with the matrices

X� =




1 b(1) y0 · · · y1−p
1 b(2) y1 · · · y2−p
...

...
...

. . .
...

1 b(t) yt−1 · · · yt−p




and

D� =




cos(µ1) sin(µ1) · · · cos(µf ) sin(µf )

cos(2µ1) sin(2µ1) · · · cos(2µf ) sin(2µf )
...

...
.. .

...
...

cos(µ1t) sin(µ1t) · · · cos(µf t) sin(µf t)



,

as well as the vectorsα� = (α0, α1, φ1, . . . , φp)
T andγ� = (β1δ1, . . . , βf , δf )T .

Typically, neither the number of frequenciesf to be used for the seasonal pattern nor the

autoregressive orderp are known. Choosing the model that fits the data best - i.e., that achieves

the lowest estimated error varianceσ̂2
U = n−1∑n

i=1 û
2
i in least squares estimation or the largest

likelihood value in maximum likelihood estimation - may result in overfitting. Therefore, model

order selection criteria effectively penalize for the number of freely estimated parameters in the

model,r. The Bayesian information criterion proposed by Schwarz, for example, takes the form

[26]

BIC = ln
(
σ̂2
U

)
+

ln(n)

n
· r. (5)

for a wide variety of models, assuming that the disturbances of the model estimated via least

squares estimation follow a Gaussian white noise process. The model attaining the smallest

BIC value is considered most appropriate.

For the model order selection in a model with deterministic terms, Lütkepohl [26] proposed

to estimate these in a first step, subtract the estimated deterministic function from the data

and apply the order selection procedure to the adjusted data. With regard to our model (4)

this basically means that for afixed value of f the model is fitted to the data with varying

autoregressive ordersp. The value ofp to be chosen is the one that minimizes the Bayesian

information criterion, substitutingp for r in equation (5).

However, we do not know the number of lower-order frequenciesf to be used. We therefore

fit the model to the data sets varyingbothf andp between 0 and 100, replacingr by (2+2·f+p)

in each calculation of the BIC. (The two additional parameters considered in the model order

r are related to the mean and the trend component.) Obviously, for any givenf this approach

leads to the same choice of the autoregressive orderp, but it allows to jointly optimizef andp.

Table 4 lists the selected orders for our three time series. In order to permit model validation,

all calculations are merely based on the first4000 observations of each time series, i.e., roughly

on the data collected during the first two weeks of experiments. The trend component employed

for UsedSwapSpace is the square root trend; for the other two time series, we include a linear

trend.
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Table 4:Selected model orders
Time Series AR orderp Frequency orderf

FreePhysMem 8 0

ResponseTime 92 0

UsedSwapSpace 1 10

While observations made 7 hours and 40 minutes ago (92 obs× 5 min/obs) significantly in-

fluence the behavior of ResponseTime, the best model for UsedSwapSpace according to the

BIC merely makes use of the last observation for predicting the future of the time series. The

selected frequency orders confirm the impressions conveyed by the plots: For FreePhysMem

and ResponseTime no parameters modeling a (weekly) seasonality are included. The frequency

order determined for UsedSwapSpace isf = 10. Obviously, 20 parameters are enough for

capturing the main features of the seasonal pattern spanning 2016 observations. The value of

explicitly including a seasonal component for modeling a time series in which seasonality is

present can now be illustrated with the help of UsedSwapSpace. Again using the first4000 ob-

servations, the parameters of the model with an autoregressive order of1 and a frequency order

of 10 are estimated for UsedSwapSpace via ordinary least squares estimation. The observations

employed for estimation as well as the respective fitted values are shown in Figure 6.

0 50 100 150 200 250 300

60
00

70
00

80
00

90
00

10
00

0
11

00
0

Time [hr]

U
se

dS
w

ap
S

pa
ce

 [k
B

]

Figure 6:UsedSwapSpace - first 4000 observations (−) and fitted values (- -)
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Figure 7:UsedSwapSpace - last 3208 observations (−) and predicted values (- -)

The model fit attained with a total of 23 parameters is very good; in fact, the observations and

the fitted model can hardly be distinguished.

In order to validate the model, we use the parameter estimates from the first4000 observa-

tions as well as the4000th observation itself and recursively predict the future behavior of the

time series based on this information only. The predictions and the data actually measured are

plotted in Figure 7. The comparison seems to indicate that the model is not only able to fit the

data, but that it also provides good forecasts. Merely relying on the data collected during the

first two weeks of experiments, we could have predicted the main features of the time series in

the following two weeks.

4 Conclusions

In this paper, we have investigated the development of resource utilization in an Apache web

server. Data collected during experiments in which the web server was put in an overload con-

dition indicated the presence of software aging. However, the periodical killing of all Apache

child processes in the course of the weekly log rotation (partly) offsets the aging phenomenon

and can therefore be considered a kind of incidental software rejuvenation. This insight plus

our findings obtained while trying to determine the capacity of the web server highlight the

necessity to study the influence of settings of the web server itself as well as of the operating

system.
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For analyzing the collected data we employed both non-parametric statistical techniques and

parametric time series models. Since previous research had not accounted for seasonality in the

prediction of resource depletion, we focused on how to model seasonal patterns and determine

the model order. For the swap space used, the one data set exhibiting weekly seasonality, we

showed that a parsimonious model of the seasonal structure is able to adequately predict the

future behavior for a period of more than1.5 weeks.

These results are promising, but they indicate the need for further research. On the one

hand, the influence of the configuration of the operating system and the Apache web server on

the aging behavior should be studied in detail. For this end, we are planning to collect resource

usage data under different combinations of parameter settings derived from a factorial design.

On the other hand, we will employ multivariate time series models in order to investigate the

interactions between various system resources. Moreover, we will build an optimization model

using the predictions of resource exhaustion as well as further information for deriving the best

rejuvenation schedule.
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