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Many methods of computational statistics lead to matrix-algebra or numeric-
al-mathematics problems. For example, the least squares method in linear
regression reduces to solving a system of linear equations, see Chapter ??. The
principal components method is based on finding eigenvalues and eigenvectors
of a matrix, see Chapter ??. Nonlinear optimization methods such as Newton’s
method often employ the inversion of a Hessian matrix. In all these cases, we
need numerical linear algebra.

Usually, one has a data matrix X of (explanatory) variables, and in
the case of regression, a data vector y for dependent variable. Then the
matrix defining a system of equations, being inverted or decomposed typi-
cally corresponds to X or X�X. We refer to the matrix being analyzed as
A = {Aij}m,n

i=1,j=1 ∈ R
m×n and to its columns as Ak = {Aik}m

i=1, k = 1, . . . , n.
In the case of linear equations, b = {bi}n

i=1 ∈ R
n represents the right-hand

side throughout this chapter. Further, the eigenvalues and singular values of
A are denoted by λi and σi, respectively, and the corresponding eigenvectors
gi, i = 1, . . . , n. Finally, we denote the n×n identity and zero matrices by In
and 0n, respectively.

In this chapter, we first study various matrix decompositions (Section 1),
which facilitate numerically stable algorithms for solving systems of linear
equations and matrix inversions. Next, we discuss specific direct and iterative
methods for solving linear systems (Sections 2 and 3). Further, we concentrate
on finding eigenvalues and eigenvectors of a matrix in Section 4. Finally, we
provide an overview of numerical methods for large problems with sparse
matrices (Section 5).

Let us note that most of the mentioned methods work under specific condi-
tions given in existence theorems, which we state without proofs. Unless said
otherwise, the proofs can be found in Harville (1997), for instance. Moreover,
implementations of the algorithms described here can be found, for example,
in Anderson et al. (1999) and Press et al. (1992).
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1 Matrix Decompositions

This section covers relevant matrix decompositions and basic numerical meth-
ods. Decompositions provide a numerically stable way to solve a system of
linear equations, as shown already in Wampler (1970), and to invert a ma-
trix. Additionally, they provide an important tool for analyzing the numerical
stability of a system.

Some of most frequently used decompositions are the Cholesky, QR, LU,
and SVD decompositions. We start with the Cholesky and LU decompositions,
which work only with positive definite and nonsingular diagonally dominant
square matrices, respectively (Sections 1.1 and 1.2). Later, we explore more
general and in statistics more widely used QR and SVD decompositions, which
can be applied to any matrix (Sections 1.3 and 1.4). Finally, we briefly describe
the use of decompositions for matrix inversion, although one rarely needs to
invert a matrix (Section 1.5). Monographs Gentle (1998), Harville (1997),
Higham (2002) and Stewart (1998) include extensive discussions of matrix
decompositions.

All mentioned decompositions allow us to transform a general system of
linear equations to a system with an upper triangular, a diagonal, or a lower
triangular coefficient matrix: Ux = b,Dx = b, or Lx = b, respectively. Such
systems are easy to solve with a very high accuracy by back substitution, see
Higham (1989). Assuming the respective coefficient matrix A has a full rank,
one can find a solution of Ux = b, where U = {Uij}n

i=1,j=1, by evaluating

xi = U−1
ii


bi −

n∑
j=i+1

Uijxj


 (1)

for i = n, . . . , 1. Analogously for Lx = b, where L = {Lij}n
i=1,j=1, one

evaluates for i = 1, . . . , n

xi = L−1
ii


bi −

i−1∑
j=1

Lijxj


 . (2)

For discussion of systems of equations that do not have a full rank, see for
example Higham (2002).

1.1 Cholesky Decomposition

The Cholesky factorization, first published by Benoit (1924), was originally
developed to solve least squares problems in geodesy and topography. This
factorization, in statistics also referred to as “square root method,” is a tri-
angular decomposition. Providing matrix A is positive definite, the Cholesky
decomposition finds a triangular matrix U that multiplied by its own trans-
pose leads back to matrix A. That is, U can be thought of as a square root
of A.
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Theorem 1. Let matrix A ∈ R
n×n be symmetric and positive definite. Then

there exists a unique upper triangular matrix U with positive diagonal ele-
ments such that A = U�U.

The matrix U is called the Cholesky factor of A and the relation A = U�U
is called the Cholesky factorization.

Obviously, decomposing a system Ax = b to U�Ux = b allows us to
solve two triangular systems: U�z = b for z and then Ux = z for x. This is
similar to the original Gauss approach for solving a positive definite system
of normal equations X�Xx = X�b. Gauss solved the normal equations by
a symmetry-preserving elimination and used the back substitution to solve
for x.

Fig. 1. Rowwise Cholesky algorithm

Let us now describe the algorithm for finding the Cholesky decomposition,
which is illustrated on Figure 1. One of the interesting features of the algo-
rithm is that in the ith iteration we obtain the Cholesky decomposition of the
ith leading principal minor of A, {Akl}i,i

k=1,l=1.

Algorithm 1
for i=1 to n

Uii =
(
Aii −

∑i−1
k=1 U2

ki

)1/2

for j=i+1 to n

Uij =
(
Aij −

∑i−1
k=1 UkiUkj

)/
Uii

end
end

The Cholesky decomposition described in Algorithm 1 is a numerically
stable procedure, see Martin et al. (1965) and Meinguet (1983), which can be
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at the same time implemented in a very efficient way. Computed values Uij

can be stored in place of original Aij , and thus, no extra memory is needed.
Moreover, let us note that while Algorithm 1 describes the rowwise decompo-
sition (U is computed row by row), there are also a columnwise version and a
version with diagonal pivoting, which is also applicable to semidefinite matri-
ces. Finally, there are also modifications of the algorithm, such as blockwise
decomposition, that are suitable for very large problems and parallelization;
see Björck (1996), Gallivan et al. (1990) and Nool (1995).

1.2 LU Decomposition

The LU decomposition is another method reducing a square matrix A to a
product of two triangular matrices (lower triangular L and upper triangular
U). Contrary to the Cholesky decomposition, it does not require a positive
definite matrix A, but there is no guarantee that L = U�.

Theorem 2. Let the matrix A ∈ R
n×n satisfy following conditions:

A11 �= 0, det
(

A11 A12

A21 A22

)
�= 0, det


A11 A12 A13

A21 A22 A23

A31 A32 A33


 �= 0, . . . , detA �= 0.

Then there exists a unique lower triangular matrix L with ones on a diagonal,
a unique upper triangular matrix U with ones on a diagonal and a unique
diagonal matrix D such that A = LDU.

Note that for any nonsingular matrix A there is always a row permutation P
such that the permuted matrix PA satisfies the assumptions of Theorem 2.
Further, a more frequently used version of this theorem factorizes A to a
lower triangular matrix L′ = LD and an upper triangular matrix U′ = U.
Finally, Zou (1991) gave alternative conditions for the existence of the LU
decomposition: A ∈ R

n×n is nonsingular and A� is diagonally dominant (i.e.,
|Aii| ≥

∑n
i=1,i�=j |Aij | for j = 1, . . . , n).

Similarly to the Cholesky decomposition, the LU decomposition reduces
solving a system of linear equations Ax = LUx = b to solving two triangular
systems: Lz = b, where z = Ux, and Ux = z.

Finding the LU decomposition of A is described in Algorithm 2. Since it
is equivalent to solving a system of linear equations by the Gauss elimination,
which searches just for U and ignores L, we refer a reader to Section 2,
where its advantages (e.g., easy implementation, speed) and disadvantages
(e.g., numerical instability without pivoting) are discussed.

Algorithm 2
L = 0n,U = In
for i = 1 to n

for j = i to n
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Lji = Aji −
∑i−1

k=1 LjkUki

end
for j = i + 1 to n

Uij =
(
Aij −

∑i−1
k=1 LikUkj

)
/Lii

end
end

Finally, note that there are also generalizations of LU to non-square and
singular matrices, such as rank revealing LU factorization; see Pan (2000) and
Miranian and Gu (2003).

1.3 QR Decomposition

One of the most important matrix transformations is the QR decomposition.
It splits a general matrix A to an orthonormal matrix Q, that is, a matrix
with columns orthogonal to each other and its Euclidian norm equal to 1, and
to an upper triangular matrix R. Thus, a suitably chosen orthogonal matrix
Q will triangularize the given matrix A.

Theorem 3. Let matrix A ∈ R
m×n with m ≥ n. Then there exist an or-

thonormal matrix Q ∈ R
m×m and an upper triangular matrix R ∈ R

n×n with
nonnegative diagonal elements such that

A = Q
(

R
0

)

(the QR decomposition of the matrix A).

If A is a nonsingular square matrix, an even slightly stronger result can
be obtained: uniqueness of the QR decomposition.

Theorem 4. Let matrix A ∈ R
n×n be nonsingular. Then there exist a unique

orthonormal matrix Q ∈ R
n×n and a unique upper triangular matrix R ∈

R
n×n with positive diagonal elements such that A = QR.

The use of the QR decomposition for solving a system of equations Ax =
QRx = b consists in multiplying the whole system by the orthonormal matrix
Q�, Q�Q = I, and then solving the remaining upper triangular system
Rx = Q�b. This method guarantees numerical stability by minimizing errors
caused by machine roundoffs (see the end of this section for details).

The QR decomposition is usually constructed by finding one orthonormal
vector (one column of Q) after another. This can be achieved using the so-
called elementary orthogonal transformations such as Householder reflections,
Householder (1958), or Givens rotations, Givens (1958), that are described in
the following subsections. These transformations are related to the solution
of the following standard task.
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Problem 1. Given a vector x ∈ R
m, x �= 0, find an orthogonal matrix M ∈

R
m×m such that M�x = ‖x‖2 ·e1, where e1 = (1, 0, . . . , 0)� denotes the first

unit vector.

In the rest of this section, we will first discuss how Householder reflections and
Givens rotations can be used for solving Problem 1. Next, using these elemen-
tary results, we show how one can construct the QR decomposition. Finally,
we briefly mention the Gram-Schmidt orthogonalization method, which also
provides a way to find the QR decomposition.

Householder Reflections

The QR decomposition using Householder reflections (HR) was developed by
Golub (1965). Householder reflection (or Householder transformation) is a
matrix P,

P = I − 1
c
uu�, c =

1
2
u�u, (3)

where u is a Householder vector. By definition, the matrix P is orthonormal
and symmetric. Moreover, for any x ∈ R

m, it holds that

Px = x − 1
c
(u�x)u.

Therefore, to apply HR one does not need to explicitly compute the matrix
P itself. Additionally, it holds Pu = −u and Px ∈ span{x,u}. This means
that HR reflects a vector x with respect to the hyperplane with normal vector
u (hence the name Householder reflection).

Fig. 2. Reflection with respect to the hyperplane with a normal vector u.
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To solve Problem 1 using some HR, we search for a vector u such that x
will be reflected to the x-axis. This holds for the following choice of u:

u = x + s1‖x‖2 · e1, s1 = 2I(x1 ≥ 0) − 1, (4)

where x1 = x�e1 denotes the first element of the vector x and I(·) represents
an indicator. For this reflection, it holds that c from (3) equals ‖x‖2(‖x‖2 +
|x1|) and Px = −s1‖x‖2 · e1 as one can verify by substituting (4) into (3).

Givens Rotations

A Givens rotation (GR) in m dimensions (or Givens transformation) is defined
by an orthonormal matrix Rij(α) ∈ R

m×m,

Rij(α) =




1 0 · · · · · · · · · · · · 0

0
. . .

...
... c s

...
...

. . .
...

... −s c
...

...
. . . 0

0 · · · · · · · · · · · · 0 1




i

j

(5)

where c = cosα and s = sinα for α ∈ R and 1 ≤ i < j ≤ n. Thus, the rotation
Rij(α) represents a plane rotation in the space spanned by the unit vectors
ei and ej by an angle α. In two dimensions, rotation R12(α),

R12(α) =
(

c s
−s c

)
, c = cosα, s = sin α

represents a clockwise rotation by an angle α; see Figure 3.
Now, let us have a look at how GRs can be used for solving Problem 1. A

GR of a vector x = (x1, . . . , xm)� ∈ R
m by an angle α results in Rij(α)x =

y = (y1, . . . , ym)� such that

yk =




xk for k �= i, j,
cxi + sxj for k = i,
−sxi + cxj for k = j.

For a vector x with nonzero elements xi or xj , setting d = (x2
i + x2

j )
1/2,

c = xi/d, s = xj/d leads to
(

c s
−s c

) (
xi

xj

)
=

(
d
0

)
.
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Fig. 3. Rotation of x in a plane by an angle α.

Thus, using GR with this specific choice of c and s (referred further as R0
ij)

implies that the jth component of the vector x vanishes. Similarly to HRs,
it is not necessary to explicitly construct the whole matrix P to transform
x since the rotation is fully described by only two numbers: c and s. This
elementary rotation R0

ij does not however constitute a solution to Problem 1
yet: we need to combine more of them.

The next step employs a simple fact that the pre- or postmultiplication of
a vector x or a matrix A by any GR Rij(α) affects only the ith and jth rows
and columns, respectively. Hence, one can combine several rotations without
one rotation spoiling the result of another rotation. (Consequently, GRs are
more flexible than HRs). Two typical ways how GRs are used for solving
Problem 1 mentioned in Section 1.3 follow.

1. R0
1nR0

1,n−1 . . .R0
13R

0
12x = de1. Here the kth component of the vector x

vanishes after the Givens rotation R0
1k. The previously zeroed elements

x2, . . . , xk−1 are not changed because rotation R1k affects only the first
and kth component.

2. R0
12R

0
23 . . .R0

n−1,nx = de1. Here the kth component vanishes by the ro-
tation Rk−1,k.

Finally, there are several algorithms for computing the Givens rotations
that improve over the straightforward evaluation of R0

ijx. A robust algorithm
minimizing the loss of precision is given in Björck (1996). An algorithm min-
imizing memory requirements was proposed by Stewart (1976). On the other
hand, Gentleman (1973) and Hammarling (1974) proposed modifications aim-
ing to minimize the number of arithmetic operations.
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QR Decomposition by Householder Reflections or Givens
Rotations

An appropriate combination of HRs or GRs, respectively, can be used to
compute the QR decomposition of a given matrix A ∈ R

m×n, m ≥ n, in
a following way. Let Qi, i = 1, . . . , n − 1, denote an orthonormal matrix in
R

m×m such that premultiplication of B = Qi−1 · · ·Q1A by Qi can zero all
elements in the ith column that are below the diagonal and such that the
previous columns 1, . . . , i − 1 are not affected at all. Such a matrix can be a
blockwise diagonal matrix with blocks being the identity matrix Ii−1 and a
matrix M solving Problem 1 for the vector composed of elements in the ith
column of B that lie on and below the diagonal. The first part Ii−1 guarantees
that the columns 1, . . . , i − 1 of matrix B are not affected by multiplication,
whereas the second block M transforms all elements in the ith column that
are below the diagonal to zero. Naturally, matrix M can be found by means
of HRs or GRs as described in previous paragraphs.

This way, we construct a series of matrices Q1, . . . ,Qn such that

Qn · · ·Q1A =
(

R
0

)
.

Since all matrices Q1, . . . ,Qn are orthonormal, Qt = Qn · · ·Q1 is also or-
thonormal and its inverse equals its transpose: Q−1

t = Q�
t . Hence,

A = (Qn · · ·Q1)�
(

R
0

)
= Q

(
R
0

)

as described in Theorem 3.
We describe now the QR algorithm using HRs or GRs. Let M(x) denote

the orthonormal matrix from Problem 1 constructed for a vector x by one of
the discussed methods.

Algorithm 3
Q = Im
R = A
for i = 1 to n

x = {Rki}m
k=i

Qi =
(

Ii−1 0
0 M(x)

)

Q = QiQ
R = QiR

end
Q = Q�

R = {Rij}n,n
i=1,j=1

There are also modifications of this basic algorithm employing pivoting
for better numerical performance and even revealing rank of the system, see
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Hong and Tan (1992) and Higham (2000) for instance. An error analysis of
the QR decomposition by HRs and GRs are given by Gentleman (1975) and
Higham (2000), respectively.

Gram-Schmidt Orthogonalization

Given a nonsingular matrix A ∈ R
m×n, m ≥ n, the Gram-Schmidt orthogo-

nalization constructs a matrix Q such that the columns of Q are orthonormal
to each other and span the same space as the columns of A. Thus, A can be
expressed as Q multiplied by another matrix R, whereby the Gram-Schmidt
orthogonalization process (GS) ensures that R is an upper triangular matrix.
Consequently, GS can be used to construct the QR decomposition of a matrix
A. A survey of GS variants and their properties is given by Björck (1994).

The classical Gram-Schmidt (CGS) process constructs the orthonormal
basis stepwise. The first column Q1 of Q is simply normalized A1. Having
constructed a orthonormal base Q1:k = {Q1, . . . ,Qk}, the next column Qk+1

is proportional to Ak+1 minus its projection to the space span{Q1:k}. Thus,
Qk+1 is by its definition orthogonal to span{Q1:k}, and at the same time, the
first k columns of A and Q span the same linear space. The elements of the
triangular matrix R from Theorem 3 are then coordinates of the columns of
A given the columns of Q as a basis.

Algorithm 4
for i = 1 to n

for j = 1 to i - 1
Rji = Q�

j Ai

end
Qi = Ai −

∑i−1
j=1 RjiQj

Rii = (Q�
i Qi)1/2

Qi = Qi/Rii

end

Similarly to many decomposition algorithms, also CGS allows a memory
efficient implementation since the computed orthonormal columns of Q can
rewrite the original columns of A. Despite this feature and mathematical cor-
rectness, the CGS algorithm does not always behave well numerically because
numerical errors can very quickly accumulate. For example, an error made
in computing Q1 affects Q2, errors in both of these terms (although caused
initially just by an error in Q1) adversely influence Q3 and so on. Fortunately,
there is a modified Gram-Schmidt (MGS) procedure, which prevents such an
error accumulation by subtracting linear combinations of Qk directly from
A before constructing following orthonormal vectors. (Surprisingly, MGS is
historically older than CGS.)

Algorithm 5
for i = 1 to n
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Qi = Ai

Rii = (Q�
i Qi)1/2

Qi = Qi/Rii

for j = i + 1 to n
Rji = Q�

i Aj

Aj = Aj − RijQi

end
end

Apart from this algorithm (the row version of MGS), there are also a
column version of MGS by Björck (1994) and MGS modifications employing
iterative orthogonalization and pivoting by Dax (2000). Numerical superiority
of MGS over CGS was experimentally established already by Rice (1966). This
result is also theoretically supported by the GS error analysis in Björck (1994),
who uncovered numerical equivalence of the QR decompositions done by MGS
and HRs.

1.4 Singular Value Decomposition

The singular value decomposition (SVD) plays an important role in numerical
linear algebra and in many statistical techniques as well. Using two orthonor-
mal matrices, SVD can diagonalize any matrix A and the results of SVD
can tell a lot about (numerical) properties of the matrix. (This is closely re-
lated to the eigenvalue decomposition: any symmetric square matrix A can
be diagonalized, A = VDV�, where D is a diagonal matrix containing the
eigenvalues of A and V is an orthonormal matrix.)

Theorem 5. Let A ∈ R
m×n be a matrix of rank r. Then there exist orthonor-

mal matrices U ∈ R
m×m and V ∈ R

n×n and a diagonal matrix D ∈ R
m×n,

with the diagonal elements σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = . . . = σmin{m,n} = 0,
such that A = UDV�.

Numbers σ1, . . . , σmin{m,n} represent the singular values of A. Columns Ui

and Vi of matrices U and V are called the left and right singular vectors of
A associated with singular value σi, respectively, because AVi = σiUi and
U�

i A = σiV�
i , i = 1, . . . , min{m, n}.

Similarly to the QR decomposition, SVD offers a numerically stable way
to solve a system of linear equations. Given a system Ax = UDV�x = b,
one can transform it to U�Ax = DV�x = U�b and solve it in two trivial
steps: first, finding a solution z of Dz = U�b, and second, setting x = Vz,
which is equivalent to V�x = z.

On the other hand, the power of SVD lies in its relation to many impor-
tant matrix properties; see Trefethen and Bau (1997), for instance. First of
all, the singular values of a matrix A are equal to the (positive) square roots
of the eigenvalues of A�A and AA�, whereby the associated left and right
singular vectors are identical with the corresponding eigenvectors. Thus, one
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can compute the eigenvalues of A�A directly from the original matrix A.
Second, the number of nonzero singular values equals the rank of a matrix.
Consequently, SVD can be used to find an effective rank of a matrix, to check
a near singularity and to compute the condition number of a matrix. That is,
it allows to assess conditioning and sensitivity to errors of a given system of
equations. Finally, let us note that there are far more uses of SVD: identifica-
tion of the null space of A, null(A) = span{Vk+1, . . . ,Vn}; computation of
the matrix pseudo-inverse, A− = VD−U�; low-rank approximations and so
on. See Björck (1996) and Trefethen and Bau (1997) for details.

Let us now present an overview of algorithms for computing the SVD
decomposition, which are not described in details due to their extent. The
first stable algorithm for computing the SVD was suggested by Golub and
Kahan (1965). It involved reduction of a matrix A to its bidiagonal form
by HRs, with singular values and vectors being computed as eigenvalues and
eigenvectors of a specific tridiagonal matrix using a method based on Sturm
sequences. The final form of the QR algorithm for computing SVD, which
has been the preferred SVD method for dense matrices up to now, is due
to Golub and Reinsch (1970); see Anderson et al. (1999), Björck (1996) or
Gentle (1998) for the description of the algorithm and some modifications.
An alternative approach based on Jacobi algorithm was given by Hari and
Veselić (1987). Latest contributions to the pool of computational methods for
SVD, including von Matt (1995), Demmel et al. (1999) and Higham (2000),
aim to improve the accuracy of singular values and computational speed using
recent advances in the QR decomposition.

1.5 Matrix Inversion

In previous sections, we described how matrix decompositions can be used for
solving systems of linear equations. Let us now discuss the use of matrix de-
compositions for inverting a nonsingular squared matrix A ∈ R

n×n, although
matrix inversion is not needed very often. All discussed matrix decomposi-
tion construct two or more matrices A1, . . . ,Ad such that A = A1 · . . . ·Ad,
where matrices Al, l = 1, . . . , d, are orthonormal, triangular, or diagonal. Be-
cause A−1 = A−1

d · . . . · A−1
1 , we just need to be able to invert orthonormal

and triangular matrices (a diagonal matrix is a special case of a triangular
matrix).

First, an orthonormal matrix Q satisfies by definition Q�Q = QQ� = In.
Thus, inversion is in this case equivalent to the transposition of a matrix:
Q−1 = Q�.

Second, inverting an upper triangular matrix U can be done by solving
directly XU = In, which leads to the backward substitution method. Let
X = {Xij}n,n

i=1,j=1 denote the searched for inverse matrix U−1.

Algorithm 6
X = 0n
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for i = n to 1
Xii = 1/Uii

for j = i + 1 to n

Xij = −
(∑j

k=i+1 XkjUik

)
/Ujj

end
end

The inversion of a lower triangular matrix L can be done analogously: the
algorithm is applied to L�, that is, Uij is replaced by Lji for i, j = 1, . . . , n.

There are several other algorithms available such as forward substitution or
blockwise inversion. Designed for a faster and more (time) efficient computa-
tion, their numerical behavior does not significantly differ from the presented
algorithm. See Croz and Higham (1992) for an overview and numerical study.

2 Direct Methods for Solving Linear Systems

A system of linear equations can be written in the matrix notation as

Ax = b, (6)

where A denotes the coefficient matrix, b is the right-hand side, and x rep-
resents the solution vector we search for. The system (6) has a solution if and
only if b belongs to the vector space spanned by the columns of A.

• If m < n, that is, the number of equations is smaller than the number of
unknown variables, or if m ≥ n but A does not have a full rank (which
means that some equations are linear combinations of the other ones),
the system is underdetermined and there are either no solution at all or
infinitely many of them. In the latter case, any solution can be written as a
sum of a particular solution and a vector from the nullspace of A. Finding
the solution space can involve the SVD decomposition (Section 1.4).

• If m > n and the matrix A has a full rank, that is, if the number of
equations is greater than the number of unknown variables, there is gen-
erally no solution and the system is overdetermined. One can search some
x such that the distance between Ax and b is minimized, which leads to
the linear least-squares problem if distance is measured by L2 norm; see
Chapter ??.

• If m = n and the matrix A is nonsingular, the system (6) has a unique
solution. Methods suitable for this case will be discussed in the rest of this
section as well as in Section 3.

¿From here on, we concentrate on systems of equations with unique solutions.
There are two basic classes of methods for solving system (6). The first

class is represented by direct methods. They theoretically give an exact solu-
tion in a (predictable) finite number of steps. Unfortunately, this does not have
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to be true in computational praxis due to rounding errors: an error made in
one step spreads in all following steps. Classical direct methods are discussed
in this section. Moreover, solving an equation system by means of matrix de-
compositions, as discussed in Section 1, can be classified as a direct method as
well. The second class is called iterative methods, which construct a series of
solution approximations that (under some assumptions) converges to the solu-
tion of the system. Iterative methods are discussed in Section 3. Finally, note
that some methods are on the borderline between the two classes; for example,
gradient methods (Section 3.5) and iterative refinement (Section 2.2).

Further, the direct methods discussed in this section are not necessarily
optimal for an arbitrary system (6). Let us deal with the main exceptions.
First, even if a unique solution exist, numerical methods can fail to find the
solution: if the number of unknown variables n is large, rounding errors can
accumulate and result in a wrong solution. The same applies very much to
systems with a nearly singular coefficient matrix. One alternative is to use
iterative methods (Section 3), which are less sensitive to these problems. An-
other approach is to use the QR or SVD decompositions (Section 1), which can
transform some nearly singular problems to nonsingular ones. Second, very
large problems including hundreds or thousands of equations and unknown
variables may be very time demanding to solve by standard direct methods.
On the other hand, their coefficient matrices are often sparse, that is, most of
their elements are zeros. Special strategies to store and solve such problems
are discussed in Section 5.

To conclude these remarks, let us mention a close relation between solving
the system (6) and computing the inverse matrix A−1:

• having an algorithm that for a matrix A computes A−1, we can find the
solution to (6) as x = A−1b;

• an algorithm solving the system (6) can be used to compute A−1 as follows.
Solve n linear systems Axi = ei, i = 1, . . . , n (or the corresponding system
with multiple right-hand sides), where ei denotes the ith unit vector. Then
A−1 = (x1, . . . ,xn).

In the rest of this section, we concentrate on the Gauss-Jordan elimination
(Section 2.1) and its modifications and extensions, such as iterative refinement
(Section 2.2). A wealth of information on direct methods can be found in
monographs Axelsson (1994), Gentle (1998) and Golub and van Loan (1996).

2.1 Gauss-Jordan Elimination

In this subsection, we will simultaneously solve the linear systems

Ax1 = b1, Ax2 = b2, . . . , Axk = bk

and a matrix equation AX = B, where X,B ∈ R
n×l (its solution is X =

A−1B, yielding the inverse A−1 for a special choice B = In). They can be
written as a linear matrix equation
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A[x1|x2| . . . |xk|X] = [b1|b2| . . . |bk|B], (7)

where the operator | stands for column augmentation.
The Gauss-Jordan elimination (GJ) is based on elementary operations that

do not affect the solution of an equation system. The solution of (7) will not
change if we perform any of the following operations:

• interchanging any two rows of A and the corresponding rows of bi’s and
B, i = 1, . . . , k;

• multiplying a row of A and the same row of bi’s and B by a nonzero
number, i = 1, . . . , k;

• adding to a chosen row of A and the same row of bi’s and B a linear
combination of other rows, i = 1, . . . , k.

Interchanging any two columns of A is possible too, but it has to be followed
by interchanging the corresponding rows of all solutions xi and X as well as
of right sides bi and B, i = 1, . . . , k. Each row or column operation described
above is equivalent to the pre- or postmultiplication of the system by a certain
elementary matrix R or C, respectively, that are results of the same operation
applied to the identity matrix In.

GJ is a technique that applies one or more of these elementary operations
to (7) so that A becomes the identity matrix In. Simultaneously, the right-
hand side becomes the set of solutions. Denoting Ri, i = 1, . . . , O, the matrices
corresponding to the ith row operation, the combination of all operations has
to constitute inverse A−1 = RO · . . . · R3R2R1 and hence x = RO · . . . ·
R3R2R1b. The exact choice of these elementary operation is described in
the following paragraph.

Pivoting in Gauss-Jordan Elimination

Let us now discuss several well-known variants of the Gauss-Jordan elimina-
tion. GJ without pivoting does not interchange any rows or columns; only
multiplication and addition of rows are permitted. First, nonzero nondiagonal
elements in the first column A1 are eliminated: the first row of (7) is divided
by its diagonal element A11 and the Ai1-multiple of the modified first row is
subtracted from the ith row, i = 2, . . . , n. We can proceed the same way for
all n columns of A, and thus, transform A to the identity matrix In. It is
easy to see that the method fails if the diagonal element in a column to be
eliminated, the so-called pivot, is zero in some step. Even if this is not the
case, one should be aware that GJ without pivoting is numerically unstable.

On the other hand, the GJ method becomes stable when using pivoting.
This means that one can interchange rows (partial pivoting) or rows and
columns (full pivoting) to put a suitable matrix element to the position of the
current pivot. Since it is desirable to keep the already constructed part of the
identify matrix, only rows below and columns right to the current pivot are
considered. GJ with full pivoting is numerically stable. From the application
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point of view, GJ with partial pivoting is numerically stable too, although
there are artificial examples where it fails. Additionally, the advantage of
partial pivoting (compared to full pivoting) is that it does not change the
order of solution components.

There are various strategies to choose a pivot. A very good choice is the
largest available element (in absolute value). This procedure depends however
on the original scaling of the equations. Implicit pivoting takes scaling into
account and chooses a pivot as if the original system were rescaled so that the
largest element of each row would be equal to one.

Finally, let us add several concluding remarks on efficiency of GJ and
its relationship to matrix decompositions. As shown, GJ can efficiently solve
problems with multiple right-hand sides known in advance and compute A−1

at the same time. On the other hand, if it is necessary to solve later a new sys-
tem with the same coefficient matrix A but a new right-hand side b, one has
to start the whole elimination process again, which is time demanding, or com-
pute A−1b using the previously computed inverse matrix A−1, which leads
to further error accumulation. In praxis, one should prefer matrix decompo-
sitions, which do not have this drawback. Specifically, the LU decomposition
(Section 1.2) is equivalent to GJ (with the same kind of pivoting applied in
both cases) and allows us to repeatedly solve systems with the same coefficient
matrix in an efficient way.

2.2 Iterative Refinement

In the introduction to Section 2, we noted that direct methods are rather
sensitive to rounding errors. Iterative refinement offers a way to improve the
solution obtained by any direct method, unless the system matrix A is too
ill-conditioned or even singular.

Let x1 denote an initially computed (approximate) solution of (6). Itera-
tive refinement is a process constructing a series xi, i = 1, 2, . . . , as described
in Algorithm 7. First, given a solution xi, the residuum ri = Axi −b is com-
puted. Then, one obtains the correction ∆xi by solving the original system
with residuum ri on the right-hand side.

Algorithm 7
Repeat for i = 1, 2, . . .

compute ri = b − Axi

solve A∆xi = ri for ∆xi

set xi+1 = xi + ∆xi

until the desired precision is achieved.

It is reasonable to carry out the computation of residuals ri in a higher preci-
sion because a lot of cancellation occurs if xi is a good approximation. Never-
theless, provided that the coefficient matrix A is not too ill-conditioned, Skeel
(1980) proved that GJ with partial pivoting and only one step of iterative re-
finement computed in a fixed precision is stable (it has a relative backward
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error proportional to the used precision). In spite of this result, one can rec-
ommend to use iterative refinement repeatedly until the desired precision is
reached.

Additionally, an important feature of iterative refinement is its low com-
putational costs. Provided that a system is solved by means of decompositions
(e.g., GJ is implemented as the LU decomposition), a factorization of A is
available already after computing the initial solution x1. Subsequently, solving
any system with the same coefficient matrix A, such as A∆xi = ri, can be
done fast and efficiently and the computational costs of iterative refinement
are small.

3 Iterative Methods for Solving Linear Systems

Direct methods for solving linear systems theoretically give the exact solution
in a finite number of steps, see Section 2. Unfortunately, this is rarely true
in applications because of rounding errors: an error made in one step spreads
further in all following steps! Contrary to direct methods, iterative methods
construct a series of solution approximations such that it converges to the ex-
act solution of a system. Their main advantage is that they are self-correcting,
see Section 3.1.

In this section, we first discuss general principles of iterative methods that
solve linear system (6), Ax = b, whereby we assume that A ∈ R

n×n and the
system has exactly one solution xe (see Section 2 for more details on other
cases). Later, we describe most common iterative methods: the Jacobi, Gauss-
Seidel, successive overrelaxation, and gradient methods (Sections 3.2–3.5).
Monographs containing detailed discussion of these methods include Björck
(1996), Golub and van Loan (1996) and Hackbusch (1994). Although we treat
these methods separately from the direct methods, let us mention here that
iterative methods can usually benefit from a combination with the Gauss
elimination, see Milaszewicz (1987) and Allanelli and Hadjidimos (2004), for
instance.

To unify the presentation of all methods, let D, L, and U denote the di-
agonal, lower triangular and upper triangular parts of a matrix A throughout
this section:

Dij =
{

Aij for i = j,
0 otherwise; Lij =

{
Aij for i > j,
0 otherwise; Uij =

{
Aij for i < j,
0 otherwise.

3.1 General Principle of Iterative Methods for Linear Systems

An iterative method for solving a linear system Ax = b constructs an iter-
ation series xi, i = 0, 1, 2, . . . , that under some conditions converges to the
exact solution xe of the system (Axe = b). Thus, it is necessary to choose
a starting point x0 and iteratively apply a rule that computes xi+1 from an
already known xi.
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A starting vector x0 is usually chosen as some approximation of x. (Luck-
ily, its choice cannot cause divergence of a convergent method.) Next, given
xi, i ∈ N, the subsequent element of the series is computed using a rule of the
form

xi+1 = Bixi + Cib, i = 0, 1, 2, . . . , (8)

where Bi,Ci ∈ R
n×n, i ∈ N, are matrix series. Different choices of Bi and Ci

define different iterative methods.
Let us discuss now a minimal set of conditions on Bi and Ci in (8) that

guarantee the convergence of an iterative method. First of all, it has to hold
that Bi + CiA = In for all i ∈ N, or equivalently,

xe = Bixe + Cib = (Bi + CiA)xe, i ∈ N. (9)

In other words, once the iterative process reaches the exact solution xe, all
consecutive iterations should stay equal to xe and the method cannot depart
from this solution. Second, starting from a point x0 �= xe, we have to ensure
that approximations xi will converge to xe as i increases.

Theorem 6. An iteration series xi given by (8) converges to the solution of
system (6) for any chosen x0 iff

lim
i→∞

BiBi−1 . . .B0 = 0.

In praxis, stationary iterative methods are used, that is, methods with
constant Bi = B and Ci = C, i ∈ N. Consequently, an iteration series is then
constructed using

xi+1 = Bxi + Cb, i = 0, 1, 2, . . . (10)

and the convergence condition in Theorem 6 has a simpler form.

Theorem 7. An iteration series xi given by (10) converges to the solution of
system (6) for any chosen x0 iff the spectral radius ρ(B) < 1, where ρ(B) =
maxi=1,...,n |λi| and λ1, . . . , λn represent the eigenvalues of B.

Note that the convergence condition ρ(B) < 1 holds, for example, if ‖B‖ < 1
in any matrix norm. Moreover, Theorem 7 guarantees the self-correcting prop-
erty of iterative methods since convergence takes place independent of the
starting value x0. Thus, if computational errors adversely affect xi during the
ith iteration, xi can be considered as a new starting vector and the itera-
tive method will further converge. Consequently, the iterative methods are in
general more robust than the direct ones.

Apparently, such an iterative process can continue arbitrarily long unless
xi = xe at some point. This is impractical and usually unnecessary. Therefore,
one uses stopping (or convergence) criteria that stop the iterative process
when a pre-specified condition is met. Commonly used stopping criteria are



Numerical Linear Algebra 19

based on the change of the solution or residual vector achieved during one
iteration. Specifically, given a small ε > 0, the iterative process is stopped
after the ith iteration when ‖xi − xi−1‖ ≤ ε, ‖ri − ri−1‖ ≤ ε, or ‖ri‖ ≤ ε,
where ri = Axi −b is a residual vector. Additionally, a maximum acceptable
number of iterations is usually specified.

3.2 Jacobi Method

The Jacobi method is motivated by the following observation. Let A have
nonzero diagonal elements (the rows of any nonsingular matrix can be reor-
ganized to achieve this). Then the diagonal part D of A is nonsingular and
the system (6) can be rewritten as Dx + (L + U)x = b. Consequently,

x = D−1[(−L − U)x + b].

Replacing x on the left-hand side by xi+1 and x on the right-hand side by xi

leads to the iteration formula of the Jacobi method:

xi+1 = −D−1(L + U)xi + D−1b.

Fig. 4. Scheme of the Jacobi method

The intuition of the Jacobi method is very simple: given an approximation
xold of the solution, let us express the kth component xk of x as a function
of the other components from the kth equation and compute xk given xold:

xnew
k =

1
Akk


bk −

n∑
j=1
j �=k

Akjx
old
j


 , (11)

k = 1, . . . , n (see Figure 4).
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The Jacobi method converges for any starting vector x0 as long as
ρ(D−1(L + U)) < 1, see Theorem 7. This condition is satisfied for a rela-
tively big class of matrices including diagonally dominant matrices (matrices
A such that

∑n
j=1,j �=i |Aij | ≤ |Aii| for i = 1, . . . , n), and symmetric matrices

A such that D, A = L + D + U, and −L + D − U are all positive definite.
Although there are many improvements to the basic principle of the Jacobi
method in terms of convergence to xe, see Sections 3.3 and 3.4, its advantage
is an easy and fast implementation (elements of a new iteration xi can be
computed independently of each other).

3.3 Gauss-Seidel Method

Analogously to the Jacobi method, we can rewrite system (6) as (L + D)x +
Ux = b, which further implies x = (L + D)−1[−Ux + b]. This leads to the
iteration formula of the Gauss-Seidel method:

xi+1 = −(L + D)−1Uxi + (L + D)−1b. (12)

The main difference to the Jacobi methods lies in a more efficient use of (11).
When computing the kth element xnew

k , the first k−1 elements xnew
1 , . . . , xnew

k−1

are already known (and presumably more precise than xold
1 , . . . , xold

k−1). Thus,
it is possible to use these new values instead of the old ones and speed up
the convergence (see Figure 5 for a scheme). Moreover, using this strategy,
the newly computed elements of xi+1 can directly overwrite the respective
elements of xi and save memory this way.

Fig. 5. Scheme of the Gauss-Seidel method

Following the Theorem 7, the Gauss-Seidel method converges for any start-
ing vector x0 iff ρ((L + D)−1U) < 1. This condition holds, for example, for
diagonally dominant matrices as well as for positive definite ones.
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3.4 Successive Overrelaxation Method

The successive overrelaxation (SOR) method aims to further refine the Gauss-
Seidel method. The Gauss-Seidel formula (12) can be rewritten as

xi+1 = xi − D−1[{Lxi+1 + (D + U)xi} − b] = xi − ∆i,

which describes the difference ∆i between xi+1 and xi expressed for the kth
element of xi(+1) from the kth equation, k = 1, . . . , n. The question SOR
poses is whether the method can converge faster if we “overly” correct xi+1

in each step; that is, if xi is corrected by a multiple ω of ∆i in each iteration.
This idea leads to the SOR formula:

xi+1 = xi − ωD−1[{Lxi+1 + (D + U)xi} − b],

or in the form (10),

xi+1 = (D + ωL)−1{(1 − ω)D − ωU}xi + ω(D + ωL)−1b. (13)

The parameter ω is called the (over)relaxation parameter and it can be shown
that SOR converges only for ω ∈ (0, 2), a result derived by Kahan (1958).

A good choice of parameter ω can speed up convergence, as measured by
the spectral radius of the corresponding iteration matrix B (see Theorem 7;
a lower spectral radius ρ(B) means faster convergence). There is a choice of
literature devoted to the optimal setting of relaxation parameter: see Hadjidi-
mos (2000) for a recent overview of the main results concerning SOR. We just
present one important result, which is due to Young (1954).

Definition 1. A matrix A is said to be two-cyclic consistently ordered if the
eigenvalues of the matrix M(α) = αD−1L + α−1D−1U, α �= 0, are indepen-
dent of α.

Theorem 8. Let the matrix A be two-cyclic consistently ordered. Let the re-
spective Gauss-Seidel iteration matrix B = −(L + D)−1U have the spectral
radius ρ(B) < 1. Then the optimal relaxation parameter ω in SOR is given
by

ωopt =
2

1 +
√

1 − ρ(B)

and for this optimal value it holds ρ(B; ωopt) = ωopt − 1.

Using SOR with the optimal relaxation parameter significantly increases
the rate of convergence. Note however that the convergence acceleration is
obtained only for ω very close to ωopt. If ωopt cannot be computed exactly, it
is better to take ω slightly larger rather than smaller. Golub and van Loan
(1996) describe an approximation algorithm for ρ(B).

On the other hand, if the assumptions of Theorem 8 are not satisfied, one
can employ the symmetric SOR (SSOR), which performs the SOR iteration
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twice: once as usual, see (13), and once with interchanged L and U. SSOR
requires more computations per iteration and usually converges slower, but
it works for any positive definite matrix and can be combined with various
acceleration techniques. See Björck (1996) and Hadjidimos (2000) for details.

3.5 Gradient methods

Gradient iterative methods are based on the assumption that A is a symmetric
positive definite matrix A. They use this assumption to reformulate (6) as a
minimization problem: xe is the only minimum of the quadratic form

Q(x) =
1
2
x�Ax − x�b.

Given this minimization problem, gradient methods construct an iteration
series of vectors converging to xe using the following principle. Having the ith
approximation xi, choose a direction vi and find a number αi such that the
new vector

xi+1 = xi + αivi

is a minimum of Q(x) on the line xi + αvi, α ∈ R. Various choices of di-
rections vi then render different gradient methods, which are in general non-
stationary (vi changes in each iteration). We discuss here three methods: the
Gauss-Seidel (as a gradient method), steepest descent and conjugate gradients
methods.

Gauss-Seidel Method as a Gradient Method

Interestingly, the Gauss-Seidel method can be seen as a gradient method for
the choice

vkn+i = ei, k = 0, 1, 2, . . . , i = 1, . . . , n,

where ei denotes the ith unit vector. The kth Gauss-Seidel iteration corre-
sponds to n subiterations with vkn+i for i = 1, . . . , n.

Steepest Descent Method

The steepest descent method is based on the direction vi given by the gradient
of Q(x) at xi. Denoting the residuum of the ith approximation ri = b−Axi,
the iteration formula is

xi+1 = xi +
r�i ri

r�i Ari
ri,

where ri represents the direction vi and its coefficient is the Q(x)-minimizing
choice of αi. By definition, this method reduces Q(xi) at each step, but it
is not very effective. The conjugate gradient method discussed in the next
subsection will usually perform better.
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Conjugate Gradient Method

In the conjugate gradient (CG) method proposed by Hestenes and Stiefel
(1952), the directions vi are generated by the A-orthogonalization of residuum
vectors. Given a symmetric positive definite matrix A, A-orthogonalization
is a procedure that constructs a series of linearly independent vectors vi such
that v�

i Avj = 0 for i �= j (conjugacy or A-orthogonality condition). It can
be used to solve the system (6) as follows (ri = b−Axi represents residuals).

Algorithm 8
v0 = r0 = b − Ax0

do
αi = (v�

i ri)/(v�
i Avi)

xi+1 = xi + αivi

ri+1 = ri − αiAvi

βi = −(v�
i Ari+1)/(v�

i Avi)
vi+1 = ri+1 + βivi

until a stop criterion holds

An interesting theoretic property of CG is that it reaches the exact solution
in at most n steps because there are not more than n (A-)orthogonal vectors.
Thus, CG is not a truly iterative method. (This does not have to be the case
if A is a singular or non-square matrix, see Kammerer and Nashed, 1972.)
On the other hand, it is usually used as an iterative method, because it can
give a solution within the given accuracy much earlier than after n iterations.
Moreover, if the approximate solution xn after n iterations is not accurate
enough (due to computational errors), the algorithm can be restarted with x0

set to xn. Finally, let us note that CG is attractive for use with large sparse
matrices because it addresses A only by its multiplication by a vector. This
operation can be done very efficiently for a properly stored sparse matrix, see
Section 5.

The principle of CG has many extensions that are applicable also for non-
symmetric nonsingular matrices: for example, generalized minimal residual,
Saad and Schultz (1986); (stabilized) biconjugate gradients, Vorst (1992); or
quasi-minimal residual, Freund and Nachtigal (1991).

4 Eigenvalues and Eigenvectors

In this section, we deal with methods for computing eigenvalues and eigen-
vectors of a matrix A ∈ R

n×n. First, we discuss a simple power method for
computing one or few eigenvalues (Section 4.1). Next, we concentrate on meth-
ods performing the complete eigenanalysis, that is, finding all eigenvalues (the
Jacobi, QR, and LR methods in Sections 4.2–4.5). Finally, we briefly describe
a way to improve already computed eigenvalues and to find the corresponding
eigenvector. Additionally, note that eigenanalysis can be also done by means
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of SVD, see Section 1.4. For more details on the described as well as some
other methods, one can consult monographs by Gentle (1998), Golub and van
Loan (1996), Press et al. (1992) and Stoer and Bulirsch (2002).

Before discussing specific methods, let us describe the principle common
to most of them. We assume that A ∈ R

n×n has eigenvalues |λ1| ≥ |λ2| ≥
· · · ≥ |λn|. To find all eigenvalues, we transform the original matrix A to a
simpler matrix B such that it is similar to A (recall that matrices A and B
are similar if there is a matrix T such that B = T−1AT). The similarity
of A and B is crucial since it guarantees that both matrices have the same
eigenvalues and their eigenvectors follow simple relation: if g is an eigenvec-
tor of B corresponding to its eigenvalue λ, then Tg is an eigenvector of A
corresponding to the same eigenvalue λ.

There are two basic strategies to construct a similarity transformation B
of the original matrix A. First, one can use a series of simple transformations,
such as GRs, and eliminate elements of A one by one (see the Jacobi method,
Section 4.2). This approach is often used to transform A to its tridiagonal
or upper Hessenberg forms. (Matrix B has the upper Hessenberg form if
it is an upper triangular except for the first subdiagonal; that is, Aij = 0
for i > j + 1, where i, j = 1, . . . , n). Second, one can also factorize A into
A = FLFR and switch the order of factors, B = FRFL (similarity of A and
B follows from B = FRFL = F−1

L AFL). This is used for example by the LR
method (Section 4.5). Finally, there are methods combining both approaches.

4.1 Power Method

In its basic form, the power method aims at finding only the largest eigenvalue
λ1 of a matrix A and the corresponding eigenvector. Let us assume that the
matrix A has a dominant eigenvalue (|λ1| > |λ2|) and n linearly independent
eigenvectors.

The power method constructs two series ci and xi, i ∈ N, that converge
to λ1 and to the corresponding eigenvector g1, respectively. Starting from
a vector x0 that is not orthogonal to g1, one only has to iteratively com-
pute Axi and split it to its norm ci+1 and the normalized vector xi+1,
see Algorithm 9. Usually, the Euclidian (ci+1 = ‖Axi‖2) and maximum
(ci+1 = maxj=1,...,n |(Axi)j |) norms are used.

Algorithm 9
i = 0
do

i = i + 1
xi+1 = Axi

ci+1 = ‖Axi+1‖
xi+1 = xi+1/ci+1

until a stop criterion holds
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Although assessing the validity of assumptions is far from trivial, one can
usually easily recognize whether the method converges from the behaviour of
the two constructed series.

Furthermore, the power method can be extended to search also for other
eigenvalues; for example, the smallest one and the second largest one. First, if
A is nonsingular, we can apply the power method to A−1 to find the smallest
eigenvalue λn because 1/λn is the largest eigenvalue of A−1. Second, if we
need more eigenvalues and λ1 is already known, we can use a reduction method
to construct a matrix B that has the same eigenvalues and eigenvectors as A
except for λ1, which is replaced by zero eigenvalue. To do so, we need to find
a (normalized) eigenvector h1 of A� corresponding to λ1 (A and A� have
the same eigenvalues) and to set B = A − λ1h1h�

1 . Naturally, this process
can be repeated to find the third and further eigenvalues.

Finally, let us mention that the power method can be used also for some
matrices without dominant eigenvalue (e.g., matrices with λ1 = · · · = λp for
some 1 < p ≤ n). For further extensions of the power method see Sidi (1989),
for instance.

4.2 Jacobi Method

For a symmetric matrix A, the Jacobi method constructs a series of orthog-
onal matrices Ri, i ∈ N, such that the matrix Ti = R�

i . . .R�
1 AR1 . . .Ri

converges to a diagonal matrix D. Each matrix Ri is a GR matrix defined
in (5), whereby the angle α is chosen so that one nonzero element (Ti)jk be-
comes zero in Ti+1. Formulas for computing Ri given the element (j, k) to
be zeroed are described in Gentle (1998), for instance. Once the matrix A is
diagonalized this way, the diagonal of D contains the eigenvalues of A and
the columns of matrix R = R1 · . . . ·Ri represent the associated eigenvectors.

There are various strategies to choose an element (j, k) which will be zeroed
in the next step. The classical Jacobi method chooses the largest off-diagonal
element in absolute value and it is known to converge. (Since searching the
maximal element is time consuming, various systematic schemes were devel-
oped, but their convergence cannot be often guaranteed.) Because the Jacobi
method is relatively slow, other methods are usually preferred (e.g., the QR
method). On the other hand, it has recently become interesting again because
of its accuracy and easy parallelization (Higham, 1997; Zhou and Brent, 2003).

4.3 Givens and Householder Reductions

The Givens and Householder methods use a similar principle as the Jacobi
method. A series of GRs or HRs, designed such that they form similarity
transformations, is applied to a symmetric matrix A in order to transformed
it to a tridiagonal matrix. (A tridiagonal matrix is the Hessenberg form for
symmetric matrices.) This tridiagonal matrix is then subject to one of the
iterative methods, such as the QR or LR methods discussed in the following
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paragraphs. Formulas for Givens and Householder similarity transformations
are given in Press et al. (1992), for instance.

4.4 QR Method

The QR method is one of the most frequently used methods for the complete
eigenanalysis of a nonsymmetric matrix, despite the fact that its convergence
is not ensured. A typical algorithm proceeds as follows. In the first step, the
matrix A is transformed into a Hessenberg matrix using Givens or House-
holder similarity transformations (see Sections 1.3 and 4.3). In the second
step, this Hessenberg matrix is subject to the iterative process called chasing.
In each iteration, similarity transformations, such as GRs, are first used to
create nonzero entries in positions (i + 2, i), (i + 3, i) and (i + 3, i + 1) for
i = 1. Next, similarity transformations are repeatedly used to zero elements
(i + 2, i) and (i + 3, i) and to move these “nonzeros” towards the lower right
corner of the matrix (i.e., to elements (i + 2, i), (i + 3, i) and (i + 3, i + 1) for
i = i + 1). As a result of chasing, one or two eigenvalues can be extracted. If
An,n−1 becomes zero (or negligible) after chasing, element An,n is an eigen-
value. Consequently, we can delete the nth row and column of the matrix and
apply chasing to this smaller matrix to find another eigenvalue. Similarly, if
An−1,n−2 becomes zero (or negligible), the two eigenvalues of the 2 × 2 sub-
matrix in the lower right corner are eigenvalues of A. Subsequently, we can
delete last two rows and columns and continue with the next iteration.

Since a more detailed description of the whole iterative process goes beyond
the extent of this contribution, we refer a reader to Gentle (1998) for a shorter
discussion and to Golub and van Loan (1996) and Press et al. (1992) for a
more detailed discussion of the QR method.

4.5 LR Method

The LR method is based on a simple observation that decomposing a matrix
A into A = FLFR and multiplying the factors in the inverse order results in
a matrix B = FRFL similar to A. Using the LU decomposing (Section 1.2),
the LR method constructs a matrix series Ai for i ∈ N, where A1 = A and

Ai = LiUi =⇒ Ai+1 = UiLi,

where Li is a lower triangular matrix and Ui is an upper triangular matrix
with ones on its diagonal. For a wide class of matrices, including symmetric
positive definite matrices, Ai and Li are proved to converge to the same lower
triangular matrix L, whereby the eigenvalues of A form the diagonal of L
and are ordered by the decreasing absolute value.
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4.6 Inverse Iterations

The method of inverse iterations can be used to improve an approximation λ∗

of an eigenvalue λ of a matrix A. The method is based on the fact that the
eigenvector g associated with λ is also an eigenvector of Ã = (A − λ∗I)−1

associated with the eigenvalue λ̃ = (λ − λ∗)−1. For an initial approximation
λ∗ close to λ, λ̃ is the dominant eigenvalue of Ã. Thus, it can be computed
by the power method described in Section 4.1, whereby λ∗ could be modified
in each iteration in order to improve the approximation of λ.

This method is not very efficient without a good starting approximation,
and therefore, it is not suitable for the complete eigenanalysis. On the other
hand, the use of the power method makes it suitable for searching of the
eigenvector g associated with λ. Thus, the method of inverse iterations often
complements methods for complete eigenanalysis and serves then as a tool
for eigenvector analysis. For this purpose, one does not have to perform the
iterative improvement of initial λ∗: applying the power method on Ã = (A−
λ∗I)−1 suffices. See Ipsen (1997), Press et al. (1992) and Stoer and Bulirsch
(2002) for more details.

5 Sparse Matrices

Numerical problems arising in some applications, such as seemingly unrelated
regressions, spatial statistics, or support vector machines (Chapter ??), are
sparse: they often involve large matrices, which have only a small number
of nonzero elements. (It is difficult to specify what exactly “small number”
is.) From the practical point of view, a matrix is sparse if it has so many
zero elements that it is worth to inspect their structure and use appropriate
methods to save storage and the number of operations. Some sparse matrices
show a regular pattern of nonzero elements (e.g., band matrices), while some
exhibit a rather irregular pattern. In both cases, solving the respective problem
efficiently means to store and operate on only nonzero elements and to keep the
“fill,” the number of newly generated nonzero elements, as small as possible.

In this section, we first discuss some of storage schemes for sparse matri-
ces, which could indicate what types of problems can be effectively treated
as sparse ones (Section 5.1). Later, we give examples of classical algorithms
adopted for sparse matrices (Section 5.2). Monographs introducing a range of
methods for sparse matrices include Duff et al. (1989), Hackbusch (1994) and
Saad (2003).

5.1 Storage Schemes for Sparse Matrices

To save storage, only nonzero elements of a sparse vector or matrix should be
stored. There are various storage schemes, which require approximately from
two to five times the number of nonzero elements to store a vector or a matrix.
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Unfortunately, there is no standard scheme. We discuss here the widely used
and sufficiently general compressed (row) storage for vectors and for general
and banded matrices.

The compressed form of a vector x consists of a triplet (c, i, n0), where
c is a vector containing nonzero elements of x, i is an integer vector con-
taining the indices of elements stored in c and n0 specifies the number of
nonzero elements. The stored elements are related to the original vector
by formula x{ij} = cj for j = 1, . . . , n0. To give an example, the vector
x = (0, 0, 3, 0,−8, 1.5, 0, 0, 0, 16, 0) could be stored as

c = (3, 1.5,−8, 16), i = (3, 6, 5, 10), n0 = 4.

Obviously, there is no need to store the elements in the original order. There-
fore, adding new nonzero elements is easy. Operations involving more sparse
vectors are simpler if we can directly access elements of one vector, that is,
if one of the vectors is “uncompressed.” For example, computing the inner
product a = x�y of a sparse vector x stored in the compressed form with a
sparse uncompressed vector y follows the algorithm

a = 0; for j = 1, . . . , n0 : a = a + y{ij} · cj .

The compressed row storage for matrices is a generalization of the vector
concept. We store the nonzero elements of A as a set of sparse row (or column)
vectors in the compressed form. The main difference is that, instead of a single
number n0, we need to store a whole vector n0 specifying the positions of the
first row elements of A in c. For example, the matrix

A =




A11 A12 0 0 0 0
A21 0 0 A24 0 0
0 0 0 A34 0 0
0 0 A43 0 A45 0
0 A52 0 0 0 A56




would be represented rowwise as

c = (A11, A12|A21, A24|A34|A43, A45|A52, A56),
i = (1, 2|1, 4|4|3, 5|2, 6),

n0 = (1, 3, 5, 6, 8, 10).

(The sign “|” just emphasizes the end of a row and has no consequence for
the storage itself.) As in the case of vectors, the elements in each row do not
have to be ordered. Consequently, there is no direct access to a particular
element Aij stored in c. Nevertheless, retrieving a row is easy: it suffices to
examine the part of i corresponding to the ith row, which is given by n0. On
the contrary, retrieving a column involves a search through the whole storage
scheme. Therefore, if a fast access to columns is necessary, it is preferable to
simultaneously store A rowwise and columnwise.

A special type of sparse matrices are matrices with a banded structure.
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Definition 2. The row bandwidth of a matrix A ∈ R
m×n is defined as

w(A) = max
1≤i≤m

(li(A) − fi(A) + 1),

where fi(A) = min{j|Aij �= 0} and li(A) = max{j|Aij �= 0} are column
indices of the first and last nonzero elements in the ith row of A.

A banded matrix A is considered to be sparse if w(A) � n. Contrary to the
general case, vector c of a banded matrix typically contains for each row all
elements between the first and last nonzero ones. Thus, the storage scheme
does not have to include in i all column indices, only one index for the first
nonzero element in a row. On the other hand, zeros within the band have to
be stored as well. For example, the matrix

A =




A11 A12 0 0 0
0 A22 0 A24 0
0 0 0 A34 0
0 0 A43 0 A45




would be represented as

c = (A11, A12|A22, 0, A24|A34|A43, 0, A45),
i = (1, 2, 4, 3),

n0 = (1, 3, 6, 7, 10).

An interesting observation is that the row bandwidth w(A) can be influenced
by column permutations. The fill-minimizing column orderings are discussed
by Björck (1996) and George and Ng (1983), for instance.

Details on some other storage schemes can be found in Björck (1996), Duff
et al. (1989) and Press et al. (1992).

5.2 Methods for Sparse Matrices

Methods for sparse matrices are still subject to intensive research. Moreover,
the choice of a suitable method for a given problem (and even the choice of
an algorithm for elementary operations such as matrix-vector multiplication)
depends on many factors, including dimension, matrix type storage scheme,
and computational environment (e.g., storage in virtual memory vs. auxiliary
storage; vector vs. parallel computing, etc.). Therefore, we provide only a
general overview and references to most general results. More details can be
found in Björck (1996), Dongarra and Eijkhout (2000), Duff et al. (1989),
Hackbusch (1994) and Saad (2003).

First, many discussed algorithms can be relatively easily adopted for
banded matrices. For example, having a row-based storage scheme, one just
needs to modify the summation limits in the row version of Cholesky decom-
position. Moreover, the positions of nonzero elements can be determined in
advance (Ng and Peyton, 1993).
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Second, the algorithms for general sparse matrices are more complicated.
A graph representation may be used to capture the nonzero pattern of a
matrix as well as to predict the pattern of the result (e.g., the nonzero pat-
tern of A�A, the Cholesky factor U, etc.). To give an overview, methods
adopted for sparse matrices include, but are not limited to, usually used de-
compositions (e.g., Cholesky, Ng and Peyton, 1993; LU and LDU, Mittal and
Al-Kurdi, 2002; QR, George and Liu, 1987, and Heath, 1984), solving sys-
tems of equations by direct (Gupta, 2002; Tran et al., 1996) and iterative
methods (Makinson and Shah, 1986; Zlatev and Nielsen, 1988) and searching
eigenvalues (Bergamaschi and Putti, 2002; Golub et al., 2000).
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