Please use this identifier to cite or link to this item:
Groh, Christian
Moldovanu, Benny
Sela, Aner
Sunde, Uwe
Year of Publication: 
Series/Report no.: 
SFB/TR 15 Discussion Paper 140
We study an elimination tournament with heterogenous contestants whose ability is common-knowledge. Each pair-wise match is modeled as an all-pay auction where the winner gets the right to compete at the next round. Equilibrium efforts are in mixed strategies, yielding rather complex play dynamics: the endogenous win probabilities in each match depend on the outcome of other matches through the identity of the expected opponent in the next round. The designer can seed the competitors according to their ranks. For tournaments with four players we find optimal seedings with respect to three different criteria: 1) maximization of total effort in the tournament; 2) maximization of the probability of a final among the two top ranked teams; 3) maximization of the win probability for the top player. In addition, we find the seedings ensuring that higher ranked players have a higher probability to win the tournament. Finally, we compare the theoretical predictions with data from NCAA basketball tournaments.
Elimination tournaments
All-Pay Auctions
Persistent Identifier of the first edition: 
Document Type: 
Working Paper

Files in This Item:

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.