Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: http://hdl.handle.net/10419/90457
Autoren: 
Krivobokova, Tatyana
Datum: 
2011
Schriftenreihe/Nr.: 
Discussion Papers No. 85
Zusammenfassung: 
There are two popular smoothing parameter selection methods for spline smoothing. First, criteria that approximate the average mean squared error of the estimator (e.g. generalized cross validation) are widely used. Alternatively, the maximum likelihood paradigm can be employed under the assumption that the underlying function to be estimated is a realization of some stochastic process. In this article the asymptotic properties of both smoothing parameter estimators are studied and compared in the frequentist and stochastic framework for penalized spline smoothing. Consistency and asymptotic normality of the estimators are proved and small sample properties are discussed. A simulation study and a real data example illustrate the theoretical fi ndings.
Schlagwörter: 
Maximum likelihood
Mean squared error minimizer
Penalized splines
Smoothing splines
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
690.93 kB





Publikationen in EconStor sind urheberrechtlich geschützt.