Please use this identifier to cite or link to this item:
Davis, M. W.
Settepanella, Simona
Year of Publication: 
Series/Report no.: 
LEM Working Paper Series 2011/23
Suppose R is the complement of an essential arrangement of toric hyperlanes in the complex torus (C*)n and pi = pi1(R). We show that H*(R; A) vanishes except in the top degree n when A is one of the following systems of local coefficients: (a) a system of nonresonant coefficients in a complex line bundle, (b) the von Neumann algebra Npi, or (c) the group ring Zpi. In case (a) the dimension of Hn is the Euler characteristic, e(R), and in case (b) the nth l2 Betti number is also e(R).
hyperplane arrangements
toric arrangements
local systems
Document Type: 
Working Paper

Files in This Item:
228.56 kB

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.