Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/87332 
Erscheinungsjahr: 
2011
Schriftenreihe/Nr.: 
Tinbergen Institute Discussion Paper No. 11-125/4
Verlag: 
Tinbergen Institute, Amsterdam and Rotterdam
Zusammenfassung: 
This paper develops a novel approach to modeling and forecasting realized volatility (RV) measures based on copula functions. Copula-based time series models can capture relevant characteristics of volatility such as nonlinear dynamics and long-memory type behavior in a flexible yet parsimonious way. In an empirical application to daily volatility for S&P500 index futures, we find that the copula-based RV (C-RV) model outperforms conventional forecasting approaches for one-day ahead volatility forecasts in terms of accuracy and efficiency. Among the copula specifications considered, the Gumbel C-RV model achieves the best forecast performance, which highlights the importance of asymmetry and upper tail dependence for modeling volatility dynamics. Although we find substantial variation in the copula parameter estimates over time, conditional copulas do not improve the accuracy of volatility forecasts.
Schlagwörter: 
Nonlinear dependence
long memory
copulas
volatility forecasting
JEL: 
C22
C53
C58
G17
Persistent Identifier der Erstveröffentlichung: 
Dokumentart: 
Working Paper
Erscheint in der Sammlung:

Datei(en):
Datei
Größe
615.64 kB





Publikationen in EconStor sind urheberrechtlich geschützt.