Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: http://hdl.handle.net/10419/86347
Autoren: 
Koopman, Siem Jan
Ooms, Marius
Hindrayanto, Irma
Datum: 
2006
Reihe/Nr.: 
Tinbergen Institute Discussion Paper 06-101/4
Zusammenfassung: 
This paper discusses identification, specification, estimation and forecasting for a general class of periodic unobserved components time series models with stochastic trend, seasonal and cycle components. Convenient state space formulations are introduced for exact maximum likelihood estimation, component estimation and forecasting. Identification issues are considered and a novel periodic version of the stochastic cycle component is presented. In the empirical illustration, the model is applied to postwar monthly US unemployment series and we discover a significantly periodic cycle. Furthermore, a comparison is made between the performance of the periodic unobserved components time series model and a periodic seasonal autoregressive integrated moving average model. Moreover, we introduce a new method to estimate the latter model.
Schlagwörter: 
Unobserved component models
state space methods
seasonal adjustment
time–varying parameters
forecasting
JEL: 
C22
C51
E32
E37
Dokumentart: 
Working Paper
Erscheint in der Sammlung:

Datei(en):
Datei
Größe
464.81 kB





Publikationen in EconStor sind urheberrechtlich geschützt.