Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/80032
Authors: 
Kern, Johannes
Granic, Dura-Georg
Year of Publication: 
2013
Series/Report no.: 
Beiträge zur Jahrestagung des Vereins für Socialpolitik 2013: Wettbewerbspolitik und Regulierung in einer globalen Wirtschaftsordnung - Session: Game Theory E15-V1
Abstract: 
This paper presents a class of finite n x n bimatrix (2-player) games we coin Circulant Games. In Circulant Games, each player's payoff matrix is a circulant matrix, i.e.\ each row vector is rotated one element relative to the preceding row vector. We show that when the payoffs in the first row of each payoff matrix are strictly ordered, a single parameter describing the rotation symmetry between the players' matrices fully determines the exact number and the structure of all Nash Equilibria in these games. The class of Circulant Games contains well-known games such as matching pennies, rock-scissors-paper, circulant coordination and common interest games.
JEL: 
C70
C72
D00
Document Type: 
Conference Paper

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.