Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/79558
Authors: 
Chernozhukov, Victor
Chetverikov, Denis
Kato, Kengo
Year of Publication: 
2012
Series/Report no.: 
cemmap working paper, Centre for Microdata Methods and Practice CWP44/12
Abstract: 
We develop a new direct approach to approximating suprema of general empirical processes by a sequence of suprema of Gaussian processes, without taking the route of approximating empirical processes themselves in the sup-norm. We prove an abstract approximation theorem that is applicable to a wide variety of problems, primarily in statistics. Especially, the bound in the main approximation theorem is non-asymptotic and the theorem does not require uniform boundedness of the class of functions. The proof of the approximation theorem builds on a new coupling inequality for maxima of sums of random vectors, the proof of which depends on an effective use of Stein's method for normal approximation, and some new empirical processes techniques. We study applications of this approximation theorem to local empirical processes and series estimation in nonparametric regression where the classes of functions change with the sample size and are not Donsker-type. Importantly, our new technique is able to prove the Gaussian approximation for the supremum type statistics under considerably weak regularity conditions, especially concerning the bandwidth and the number of series functions, in those examples.
JEL: 
C13
C31
Persistent Identifier of the first edition: 
Document Type: 
Working Paper

Files in This Item:
File
Size
342.21 kB





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.