Please use this identifier to cite or link to this item:
Chandrasekhar, Arun
Chernozhukov, Victor
Molinari, Francesca
Schrimpf, Paul
Year of Publication: 
Series/Report no.: 
cemmap working paper, Centre for Microdata Methods and Practice CWP43/12
This paper provides inference methods for best linear approximations to functions which are known to lie within a band. It extends the partial identification literature by allowing the upper and lower functions defining the band to be any functions, including ones carrying an index, which can be estimated parametrically or non-parametrically. The identification region of the parameters of the best linear approximation is characterized via its support function, and limit theory is developed for the latter. We prove that the support function approximately converges to a Gaussian process, and validity of the Bayesian bootstrap is established. The paper nests as special cases the canonical examples in the literature: mean regression with interval valued outcome data and interval valued regressor data. Because the bounds may carry an index, the paper covers problems beyond mean regression; the framework is extremely versatile. Applications include quantile and distribution regression with interval valued data, sample selection problems, as well as mean, quantile, and distribution treatment effects. Moreover, the framework can account for the availability of instruments. An application is carried out, studying female labor force participation along the lines of Mulligan and Rubinstein (2008).
Persistent Identifier of the first edition: 
Document Type: 
Working Paper

Files in This Item:
459.88 kB

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.