Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: http://hdl.handle.net/10419/79400
Autoren: 
Horowitz, Joel
Lee, Sokbae
Datum: 
2006
Schriftenreihe/Nr.: 
cemmap working paper No. CWP09/06
Zusammenfassung: 
We consider nonparametric estimation of a regression function that is identified by requiring a specified quantile of the regression error conditional on an instrumental variable to be zero. The resulting estimating equation is a nonlinear integral equation of the first kind, which generates an ill-posed-inverse problem. The integral operator and distribution of the instrumental variable are unknown and must be estimated nonparametrically. We show that the estimator is mean-square consistent, derive its rate of convergence in probability, and give conditions under which this rate is optimal in a minimax sense. The results of Monte Carlo experiments show that the estimator behaves well in finite samples.
Schlagwörter: 
Statistical inverse , endogenous variable , instrumental variable , optimal rate , nonlinear integral equation , nonparametric regression
JEL: 
C13
C31
Persistent Identifier der Erstveröffentlichung: 
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
638.04 kB





Publikationen in EconStor sind urheberrechtlich geschützt.