Please use this identifier to cite or link to this item:
Dittmann, Ingolf
Granger, Clive W. J.
Year of Publication: 
Series/Report no.: 
Technical Report, SFB 475: Komplexitätsreduktion in Multivariaten Datenstrukturen, Universität Dortmund 2000,25
This paper shows that the properties of nonlinear transformations of a fractionally integrated process depend strongly on whether the initial series is stationary or not. Transforming a stationary Gaussian I(d) process with d > 0 leads to a long-memory process with the same or a smaller long-memory parameter depending on the Hermite rank of the transformation. Any nonlinear transformation of an antipersistent Gaussian I(d) process is I(0). For non-stationary I(d) processes, every integer power transformation is non-stationary and exhibits a deterministic trend in mean and in variance. In particular, the square of a non-stationary Gaussian I(d) process still has long memory with parameter d, whereas the square of a stationary Gaussian I(d) process shows less dependence than the initial process. Simulation results for other transformations are also discussed.
Document Type: 
Working Paper

Files in This Item:
1.29 MB
338.15 kB

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.