Publisher:
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes, Berlin
Abstract:
The paper is concerned with the estimation of the long memory parameter in a conditionally heteroskedastic model proposed by Giraitis, Robinson and Surgailis (1999). We consider methods based on the partial sums of the squared observations which are similar in spirit to the classical R/S analysis as well as spectral domain approximate maximum likelihood estimators. The finite sample performance of the estimators is examined by means of a Monte Carlo study.