Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/56743
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLan, Hongen_US
dc.contributor.authorMeyer-Gohde, Alexanderen_US
dc.date.accessioned2012-02-16en_US
dc.date.accessioned2012-04-05T16:21:33Z-
dc.date.available2012-04-05T16:21:33Z-
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/10419/56743-
dc.description.abstractWe prove that standard regularity and saddle stability assumptions for linear approximations are sufficient to guarantee the existence of a unique solution for all undetermined coefficients of nonlinear perturbations of arbitrary order to discrete time DSGE models. We derive the perturbation using a matrix calculus that preserves linear algebraic structures to arbitrary orders of derivatives, enabling the direct application of theorems from matrix analysis to prove our main result. As a consequence, we provide insight into several invertibility assumptions from linear solution methods, prove that the local solution is independent of terms first order in the perturbation parameter, and relax the assumptions needed for the local existence theorem of perturbation solutions.en_US
dc.language.isoengen_US
dc.publisher|aSFB 649, Economic Risk |cBerlinen_US
dc.relation.ispartofseries|aSFB 649 discussion paper |x2012-015en_US
dc.subject.jelC61en_US
dc.subject.jelC63en_US
dc.subject.jelE17en_US
dc.subject.ddc330en_US
dc.subject.keywordperturbationen_US
dc.subject.keywordmatrix calculusen_US
dc.subject.keywordDSGEen_US
dc.subject.keywordsolution methodsen_US
dc.subject.keywordBézout theoremen_US
dc.subject.keywordSylvester equationsen_US
dc.subject.stwDynamisches Gleichgewichten_US
dc.subject.stwMatrizenrechnungen_US
dc.subject.stwTheorieen_US
dc.titleExistence and uniqueness of perturbation solutions to DSGE modelsen_US
dc.typeWorking Paperen_US
dc.identifier.ppn68553572Xen_US
dc.rightshttp://www.econstor.eu/dspace/Nutzungsbedingungenen_US

Files in This Item:
File
Size
441.38 kB





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.