Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKlein, Ingoen_US
dc.contributor.authorArdelean, Vladen_US
dc.description.abstractLi, Fang & Tian (1994) assert that special quasi-linear means should be preferred to the simple arithmetic mean for robustness properties. The strategy that is used to show robustness is completely detached from the concepts wellknown from the theory of robust statistics. Robustness of estimators can be verified with tools from robust statistics, e.g. the influence function or the breakdown point. On the other hand it seems that robust statistics is not interested in quasi-linear means. Therefore, we compute influence functions and breakdown points for quasi-linear means and show that these means are not robust in the sense of robust statistics if the generator is unbounded. As special cases we consider the Laspeyres, the Paasche and the Fisher indices.en_US
dc.publisher|aUniversität Erlangen-Nürnberg, Lehrstuhl für Statistik und empirische Wirtschaftsforschung |cNürnbergen_US
dc.relation.ispartofseries|aDiskussionspapiere, Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Statistik und Ökonometrie |x88/2010en_US
dc.subject.keywordquasi-linear meanen_US
dc.subject.keywordinfluence functionen_US
dc.subject.keywordbreakdown pointen_US
dc.subject.keywordLaspeyres indexen_US
dc.subject.keywordPaasche indexen_US
dc.subject.keywordFisher indexen_US
dc.titleRobustness properties of quasi-linear means with application to the Laspeyres and Paasche indicesen_US
dc.typeWorking Paperen_US

Files in This Item:
288.24 kB

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.