Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/49889
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAn, Yonghongen_US
dc.contributor.authorHu, Yingyaoen_US
dc.date.accessioned2010-03-19en_US
dc.date.accessioned2011-09-27T15:21:21Z-
dc.date.available2011-09-27T15:21:21Z-
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/10419/49889-
dc.description.abstractIt is widely admitted that the inverse problem of estimating the distribution of a latent variable X* from an observed sample of X, a contaminated measurement of X*, is ill-posed. This paper shows that measurement error models for self-reporting data are well-posed, assuming the probability of reporting truthfully is nonzero, which is an observed property in validation studies. This optimistic result suggests that one should not ignore the point mass at zero in the error distribution when modeling measurement errors in self-reported data. We also illustrate that the classical measurement error models may in fact be conditionally well-posed given prior information on the distribution of the latent variable X*. By both a Monte Carlo study and an empirical application, we show that failing to account for the property can lead to significant bias on estimation of distribution of X*.en_US
dc.language.isoengen_US
dc.publisher|aJohns Hopkins Univ., Dep. of Economics |cBaltimore, Md.en_US
dc.relation.ispartofseries|aWorking papers // the Johns Hopkins University, Department of Economics |x556en_US
dc.subject.ddc330en_US
dc.subject.keywordWell-poseden_US
dc.subject.keywordconditionally well-poseden_US
dc.subject.keywordill-poseden_US
dc.subject.keywordinverse problemen_US
dc.subject.keywordFredholm integral equationen_US
dc.subject.keyworddeconvolutionen_US
dc.subject.keywordmeasurement error modelen_US
dc.subject.keywordself-reported dataen_US
dc.subject.keywordsurvey dataen_US
dc.subject.stwSchätztheorieen_US
dc.subject.stwBefragungen_US
dc.subject.stwStatistischer Fehleren_US
dc.subject.stwTheorieen_US
dc.titleWell-posedness of measurement error models for self-reported dataen_US
dc.typeWorking Paperen_US
dc.identifier.ppn612116069en_US
dc.rightshttp://www.econstor.eu/dspace/Nutzungsbedingungenen_US

Files in This Item:
File
Size
416.96 kB





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.