Please use this identifier to cite or link to this item:
Steland, Ansgar
Year of Publication: 
Series/Report no.: 
Technical Report // Universität Dortmund, SFB 475 Komplexitätsreduktion in Multivariaten Datenstrukturen 2004,09
An attractive nonparametric method to detect change-points sequentially is to apply control charts based on kernel smoothers. Recently, the strong convergence of the associated normed delay associated with such a sequential stopping rule has been studied under sequences of out-of-control models. Kernel smoothers employ a kernel function to downweight past data. Since kernel functions with values in the unit interval are sufficient for that task, we study the problem to optimize the asymptotic normed delay over a class of kernels ensuring that restriction and certain additional moment constraints. We apply the key theorem to discuss several important examples where explicit solutions exist to illustrate that the results are applicable.
Control charts
financial data
nonparametric regression
quality control
statistical genetics
Document Type: 
Working Paper

Files in This Item:
206.83 kB

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.