Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/39303
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYao, Fangen_US
dc.date.accessioned2010-08-26T11:56:57Z-
dc.date.available2010-08-26T11:56:57Z-
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/10419/39303-
dc.description.abstractThis paper explores implications of nominal rigidity characterized by a non-constant hazard function for aggregate dynamics. I derive the NKPC under an arbitrary hazard function and parameterize it with the Weibull duration model. The resulting Phillips curve involves lagged inflation and lagged expectations. It nests the Calvo NKPC as a limiting case in the sense that the effects of both terms are canceled out under the constant-hazard assumption. Furthermore, I find lagged inflation always has negative coefficients, thereby making it impossible to interpret inflation persistence as intrinsic. The numerical evaluation shows that the increasing hazard function leads to hump-shaped impulse responses of inflation to monetary shocks, and output leads inflation.en_US
dc.language.isoengen_US
dc.publisher|aSFB 649, Economic Risk |cBerlinen_US
dc.relation.ispartofseries|aSFB 649 discussion paper |x2009,030en_US
dc.subject.jelE12en_US
dc.subject.jelE31en_US
dc.subject.ddc330en_US
dc.subject.keywordHazard functionen_US
dc.subject.keywordWeibull distributionen_US
dc.subject.keywordNew Keynesian Phillips Curveen_US
dc.subject.stwNew-Keynesian Phillips Curveen_US
dc.subject.stwStatistische Bestandsanalyseen_US
dc.subject.stwPreisrigiditäten_US
dc.subject.stwTheorieen_US
dc.subject.stwInflationen_US
dc.subject.stwLag-Modellen_US
dc.subject.stwTheorieen_US
dc.titleNon-constant hazard function and inflation dynamicsen_US
dc.type|aWorking Paperen_US
dc.identifier.ppn603378978en_US
dc.rightshttp://www.econstor.eu/dspace/Nutzungsbedingungen-

Files in This Item:
File
Size
346.16 kB





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.