Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/37145 
Year of Publication: 
2010
Series/Report no.: 
Beiträge zur Jahrestagung des Vereins für Socialpolitik 2010: Ökonomie der Familie - Session: Computational Econometrics No. A3-V1
SFB 649 Discussion Paper No. 2010-004
Publisher: 
Verein für Socialpolitik, Frankfurt a. M.
Abstract: 
In this paper, we develop and apply Bayesian inference for an extended Nelson-Siegel (1987) term structure model capturing interest rate risk. The so-called Stochastic Volatility Nelson-Siegel (SVNS) model allows for stochastic volatility in the underlying yield factors. We propose a Markov chain Monte Carlo (MCMC) algorithm to efficiently estimate the SVNS model using simulation-based inference. Applying the SVNS model to monthly U.S. zero-coupon yields, we find significant evidence for time-varying volatility in the yield factors. This is mostly true for the level and slope volatility revealing also the highest persistence. It turns out that the inclusion of stochastic volatility improves the model's goodness-of-fit and clearly reduces the forecasting uncertainty particularly in low-volatility periods. The proposed approach is shown to work efficiently and is easily adapted to alternative specifications of dynamic factor models revealing (multivariate) stochastic volatility.
Subjects: 
term structure of interest rates
stochastic volatility
dynamic factor
JEL: 
C11
C13
C32
Document Type: 
Conference Paper

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.