Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/333540 
Erscheinungsjahr: 
2025
Schriftenreihe/Nr.: 
Center for Mathematical Economics Working Papers No. 755
Verlag: 
Bielefeld University, Center for Mathematical Economics (IMW), Bielefeld
Zusammenfassung: 
We study mean-field games of optimal stopping (OS-MFGs) and introduce an entropy-regularized framework to enable learning-based solution methods. By utilizing randomized stopping times, we reformulate the OS-MFG as a mean-field game of singular stochastic controls (SC-MFG) with entropy regularization. We establish the existence of equilibria and prove their stability as the entropy parameter vanishes. Fictitious play algorithms tailored for the regularized setting are introduced, and we show their convergence under both Lasry-Lions monotonicity and supermodular assumptions on the reward functional. Our work lays the theoretical foundation for model-free learning approaches to OS-MFGs.
Schlagwörter: 
Mean-field game of optimal stopping
singular stochastic control
entropy regularization
randomized stopping times
fictitious play algorithm
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
639.89 kB





Publikationen in EconStor sind urheberrechtlich geschützt.