Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/331711 
Erscheinungsjahr: 
2025
Schriftenreihe/Nr.: 
IZA Discussion Papers No. 18147
Verlag: 
Institute of Labor Economics (IZA), Bonn
Zusammenfassung: 
How should researchers adjust for covariates? We show that if the propensity score is estimated using a specific covariate balancing approach, inverse probability weighting (IPW), augmented inverse probability weighting (AIPW), and inverse probability weighted regression adjustment (IPWRA) estimators are numerically equivalent for the average treatment effect (ATE), and likewise for the average treatment effect on the treated (ATT). The resulting weights are inherently normalized, making normalized and unnormalized IPW and AIPW identical. We discuss implications for instrumental variables and difference-in-differences estimators and illustrate with two applications how these numerical equivalences simplify analysis and interpretation.
Schlagwörter: 
covariate balancing
difference-in-differences
double robustness
instrumental variables
inverse probability tilting
treatment effects
weighting
JEL: 
C20
C21
C23
C26
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
528.79 kB





Publikationen in EconStor sind urheberrechtlich geschützt.