Abstract:
As one of the strongest Othello agents, Edax employs an n-tuple network to evaluate the board, with points of interest represented as tuples. However, this network maintains a constant shape throughout the game, whereas the points of interest in Othello vary with respect to game’s progress. The present study was conducted to optimize the shape of the n-tuple network using a genetic algorithm to maximize final score prediction accuracy for a certain number of moves. We selected shapes for 18-, 22-, 26-, 30-, 34-, 38-, 42-, and 46-move configurations, and constructed an agent that appropriately shapes an n-tuple network depending on the progress of the game. Consequently, agents using the n-tuple network developed in this study exhibited a winning rate of 75%. This method is independent of game characteristics and can optimize the shape of larger (or smaller) N-tuple networks.