Abstract:
Living organisms expend energy to sustain survival, a process which is reliant on consuming resources - termed here as the 'cost of survival'. In the Prisoner's Dilemma (PD), a classic model of social interaction, individual payoffs depend on choices to either provide benefits to others at a personal cost (cooperate) or exploit others to maximize personal gain (defect). We demonstrate that in an iterated Prisoner's Dilemma (IPD), a simple 'Always Cooperate' (ALLC) strategy evolves and remains evolutionarily stable when the cost of survival is sufficiently high, meaning exploited cooperators have a low probability of survival. We derive a rule for the evolutionary stability of cooperation, x/z > T/R, where x represents the duration of mutual cooperation, z the duration of exploitation, T the defector’s free-riding payoff, and R the payoff for mutual cooperation. This finding suggests that higher survival costs can enhance social welfare by selecting for cooperative strategies.