Abstract:
Interval games are an extension of cooperative coalitional games, in which players are assumed to face payoff uncertainty. Characteristic functions thus assign a closed interval instead of a real number. This study revisits two interval game versions of Shapley values (i.e., the interval Shapley value and the interval Shapley-like value) and characterizes them using an axiomatic approach. For the interval Shapley value, we show that the existing axiomatization can be generalized to a wider subclass of interval games called size monotonic games. For the interval Shapley-like value, we show that a standard axiomatization using Young's strong monotonicity holds on the whole class of interval games.