Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/327972 
Autor:innen: 
Erscheinungsjahr: 
2024
Quellenangabe: 
[Journal:] CBN Journal of Applied Statistics [ISSN:] 2476-8472 [Volume:] 15 [Issue:] 2 [Year:] 2024 [Pages:] 01-35
Verlag: 
The Central Bank of Nigeria, Abuja
Zusammenfassung: 
This paper using bagged GARCH-type model, with ensemble averaging estimators models and compares the forecast performances to those of some classical GARCH- type models. Using Mean Absolute Forecast Error (MAFE) and Root Mean Squared Forecast Error (RMSFE) as forecast-error measures, the results shows bagging- ensemble based methods to out-perform the alternative volatility models. The study recommended that volatility estimates obtained via bagged ensemble methods should be used as inputs to facilitate financial operations such as derivatives pricing, risk hedging, computations of Value-at-Risk (VaR) estimates, and for financial decision making.
Schlagwörter: 
Bagging
ensemble
ensemble member
forecast
volatility
JEL: 
E22
C53
C58
Persistent Identifier der Erstveröffentlichung: 
Dokumentart: 
Article

Datei(en):
Datei
Größe
329.67 kB





Publikationen in EconStor sind urheberrechtlich geschützt.