Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/327359 
Year of Publication: 
2023
Citation: 
[Journal:] Journal of Innovation & Knowledge (JIK) [ISSN:] 2444-569X [Volume:] 8 [Issue:] 4 [Article No.:] 100453 [Year:] 2023 [Pages:] 1-9
Publisher: 
Elsevier, Amsterdam
Abstract: 
As finance returns to its fundamental purpose of serving the real economy, its connections with various industries are strengthening. Accurately depicting the interdependence among these industries and mitigating financial risks has become increasingly critical. The dependence among China's real industries is dynamic rather than static, which is particularly pronounced during the COVID-19 pandemic. In this paper, we propose a dynamic factor model to optimize the risk of high-dimensional portfolios. To describe the dependence structure, we employ the factor copula model, driven by a GAS (Generalized Autoregressive Score) model. By combining the dynamic factor model with a mean-ES (Expected Shortfall) model, we construct a dynamic factor copula-mean-ES model. Our empirical findings, based on an analysis of 24 industries in China, suggest that the dynamic heterogeneous factor copula model is the most suitable for describing portfolio risk. Furthermore, the mean-ES model ensures the lowest portfolio risk for a given expected return. Accurate return predictions enable leveraging market information to develop a 'good knowledge' of dynamic copula and risk optimization. This 'good knowledge' of dynamic copulas facilitates precise return prediction and effective risk optimization of portfolios, thereby addressing the relationship between risk prevention and sustainability. Moreover, it reveals the internal connection between China's real industry and the risk landscape of the financial market.
Subjects: 
Risk optimization
High-dimensional portfolios
Dynamic factor copula
Mean-ES model
Real industry
JEL: 
C22
C61
G21
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by-nc-nd Logo
Document Type: 
Article

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.