Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/325216 
Year of Publication: 
2024
Citation: 
[Journal:] EURO Journal on Transportation and Logistics (EJTL) [ISSN:] 2192-4384 [Volume:] 13 [Issue:] 1 [Article No.:] 100146 [Year:] 2024 [Pages:] 1-15
Publisher: 
Elsevier, Amsterdam
Abstract: 
We study a multi-product maritime inventory routing problem (MIRP) with sailing time uncertainty. We explicitly consider the replanning that happens after uncertainty is revealed. The objective is to determine the stability of the adjusted plans after the occurrence of an uncertain event and to evaluate the effect of incorporating different stability metrics in the rescheduling process. Five stability metrics are introduced, and mathematical formulations of the MIRP incorporating each metric are presented. A reoptimization framework is then used to analyze the impact of each stability metric. Calculations are performed using 360 instances. The main result is that adjustments to the original plan occur at no additional cost almost 50% of the time. If decision makers want a more stable plan, they should accept a 5% cost deterioration, resulting in 20% more stable solutions.
Subjects: 
Reoptimization
Uncertainty
Stability metrics
Maritime inventory routing
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by Logo
Document Type: 
Article

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.