Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/325131 
Erscheinungsjahr: 
2020
Quellenangabe: 
[Journal:] EURO Journal on Transportation and Logistics (EJTL) [ISSN:] 2192-4384 [Volume:] 9 [Issue:] 2 [Article No.:] 100004 [Year:] 2020 [Pages:] 1-12
Verlag: 
Elsevier, Amsterdam
Zusammenfassung: 
The problem at the heart of this tutorial consists in modeling the path choice behavior of network users. This problem has been extensively studied in transportation science, where it is known as the route choice problem. In this literature, individuals' choice of paths are typically predicted using discrete choice models. This article is a tutorial on a specific category of discrete choice models called recursive, and it makes three main contributions: First, for the purpose of assisting future research on route choice, we provide a comprehensive background on the problem, linking it to different fields including inverse optimization and inverse reinforcement learning. Second, we formally introduce the problem and the recursive modeling idea along with an overview of existing models, their properties and applications. Third, we extensively analyze illustrative examples from different angles so that a novice reader can gain intuition on the problem and the advantages provided by recursive models in comparison to path-based ones.
Schlagwörter: 
Path choice models
Recursive discrete choice models
Inverse optimization
Inverse reinforcement learning
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by-nc-nd Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe
739.5 kB





Publikationen in EconStor sind urheberrechtlich geschützt.