Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/324380 
Erscheinungsjahr: 
2025
Schriftenreihe/Nr.: 
cemmap working paper No. CWP07/25
Verlag: 
Centre for Microdata Methods and Practice (cemmap), The Institute for Fiscal Studies (IFS), London
Zusammenfassung: 
Sample selection is pervasive in applied economic studies. This paper develops semiparametric selection models that achieve point identification without relying on exclusion restrictions, an assumption long believed necessary for identification in semiparametric selection models. Our identification conditions require at least one continuously distributed covariate and certain nonlinearity in the selection process. We propose a two-step plug-in estimator that is Í n-consistent, asymptotically normal, and computationally straightforward (readily available in statistical software), allowing for heteroskedasticity. Our approach provides a middle ground between Lee (2009)'s nonparametric bounds and Honoré and Hu (2020)'s linear selection bounds, while ensuring point identification. Simulation evidence confirms its excellent finite-sample performance. We apply our method to estimate the racial and gender wage disparity using data from the US Current Population Survey. Our estimates tend to lie outside the Honoré and Hu bounds.
Schlagwörter: 
sample selection
semiparametric identification
sieve estimation
exclusion restriction
Persistent Identifier der Erstveröffentlichung: 
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
473.58 kB





Publikationen in EconStor sind urheberrechtlich geschützt.