Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/323578 
Erscheinungsjahr: 
2025
Quellenangabe: 
[Journal:] Electronic Markets [ISSN:] 1422-8890 [Volume:] 35 [Issue:] 1 [Article No.:] 37 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2025
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
Based on the work by Buettner (2017) showing a personality-based recommender system for electronic markets using social media data, we extend the work by proposing a novel deep learning-based engine to predict the user’s personality just based on electroencephalographic brain data. As brain-computer interfaces and hybrid intelligence devices enable access to human brains, using electroencephalographic brain data becomes more relevant in future. Contrary to the majority view of previous research, our results show that there is a link between personality traits and brain features of a user. With a four times higher probability of correctly predicting the personality of an independent user compared to naive prediction, we demonstrate the possibility of predicting a user’s personality based on their brain information and thus showing a new reliable approach for marketing purposes in electronic markets.
Schlagwörter: 
Convolutional neural network
Predictive analysis
Five-factor model
Machine learning
Personality mining
Resting-state electroencephalogram
JEL: 
C89
C90
D40
M31
M37
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.