Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/323385 
Year of Publication: 
2024
Citation: 
[Journal:] Journal of Global Optimization [ISSN:] 1573-2916 [Volume:] 92 [Issue:] 1 [Publisher:] Springer US [Place:] New York, NY [Year:] 2024 [Pages:] 159-186
Publisher: 
Springer US, New York, NY
Abstract: 
We present a branch-and-bound method for multiobjective mixed-integer convex quadratic programs that computes a superset of efficient integer assignments and a coverage of the nondominated set. The method relies on outer approximations of the upper image set of continuous relaxations. These outer approximations are obtained addressing the dual formulations of specific subproblems where the values of certain integer variables are fixed. The devised pruning conditions and a tailored preprocessing phase allow a fast enumeration of the nodes. Despite we do not require any boundedness of the feasible set, we are able to prove that the method stops after having explored a finite number of nodes. Numerical experiments on a broad set of instances with two, three, and four objectives are presented.
Subjects: 
Multiobjective optimization
Convex quadratic optimization
Mixed-integer quadratic programming
Branch-and-bound algorithm
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by Logo
Document Type: 
Article
Document Version: 
Published Version

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.