Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/323305 
Year of Publication: 
2024
Citation: 
[Journal:] Environment, Development and Sustainability [ISSN:] 1573-2975 [Volume:] 27 [Issue:] 5 [Publisher:] Springer Netherlands [Place:] Dordrecht [Year:] 2024 [Pages:] 9673-9741
Publisher: 
Springer Netherlands, Dordrecht
Abstract: 
Abstract Food security remains a pressing concern in the face of an increasing world population and environmental challenges. As climate change, biodiversity loss, and water scarcity continue to impact agricultural productivity, traditional livestock farming faces limitations in meeting the growing global demand for meat and dairy products. In this context, black soldier fly larvae (BSFL) have emerged as a promising alternative for sustainable food production. BSFL possess several advantages over conventional livestock, including their rapid growth, adaptability to various organic waste substrates, and low environmental impact. Their bioconversion rate, the ability to transform organic waste into valuable products, and final product optimization are key factors that enhance their potential as a nutrient-rich protein source, fertilizer, and biofuel. This review explores strategies to enhance the bioconversion rate and improve the end products derived from BSF treatment. It highlights the benefits of using BSFL over other interventions and underscores the significance of optimizing their bioconversion rate to meet the challenges of global food security sustainably. Despite the promising prospects of BSF-derived products, consumer acceptance and regulatory hurdles remain critical aspects to address in realizing their full market potential. The utilization of BSFL as a sustainable source of food and feed can contribute to waste management, reduce environmental pollution, and address the pressing issue of food security in an environmentally responsible manner. However, there is a need for further research and innovation to ensure the safety, quality, and economic viability of BSF-based products for both animal and human consumption.
Subjects: 
Food security
Organic waste
Consumer acceptance
Waste management
Environmental pollution
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by Logo
Document Type: 
Article
Document Version: 
Published Version
Appears in Collections:

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.