Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/322328 
Erscheinungsjahr: 
2024
Schriftenreihe/Nr.: 
Working Paper No. 14/2024
Verlag: 
Norges Bank, Oslo
Zusammenfassung: 
We propose an easy-to-implement framework for combining quantile forecasts, applied to forecasting GDP growth. Using quantile regressions, our combination scheme assigns weights to individual forecasts from different indicators based on quantile scores. Previous studies suggest distributional variation in forecasting performance of leading indicators: some indicators predict the mean well, while others excel at predicting the tails. Our approach leverages this by assigning different combination weights to various quantiles of the predictive distribution. In an empirical application to forecast US GDP growth using common predictors, forecasts from our quantile combination outperform those from commonly used combination approaches, especially for the tails.
Schlagwörter: 
Density forecasts
forecast combinations
quantile regressions
downside risk
JEL: 
C32
C53
E37
Persistent Identifier der Erstveröffentlichung: 
ISBN: 
978-82-8379-334-5
Creative-Commons-Lizenz: 
cc-by-nc-nd Logo
Dokumentart: 
Working Paper
Erscheint in der Sammlung:

Datei(en):
Datei
Größe
3.09 MB





Publikationen in EconStor sind urheberrechtlich geschützt.