Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/322137 
Autor:innen: 
Erscheinungsjahr: 
2025
Schriftenreihe/Nr.: 
Tinbergen Institute Discussion Paper No. TI 2025-034/III
Verlag: 
Tinbergen Institute, Amsterdam and Rotterdam
Zusammenfassung: 
This paper introduces a novel approach to simulation smoothing for nonlinear and non-Gaussian state space models. It allows for computing smoothed estimates of the states and nonlinear functions of the states, as well as visualizing the joint smoothing distribution. The approach combines extremum estimation with simulated data from the model to estimate the conditional distributions in the backward smoothing decomposition. The method is generally applicable and can be paired with various estimators of conditional distributions. Several applications to nonlinear models are presented for illustration. An empirical application based on a stochastic volatility model with stable errors highlights the flexibility of the approach.
Schlagwörter: 
Amortized inference
Fixed-interval smoothing
Importance sampling
Latent variables
Stable distribution
Stochastic volatility
Dokumentart: 
Working Paper
Erscheint in der Sammlung:

Datei(en):
Datei
Größe
869.45 kB





Publikationen in EconStor sind urheberrechtlich geschützt.