Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/321858 
Erscheinungsjahr: 
2025
Schriftenreihe/Nr.: 
IU Discussion Papers - Business & Management No. 4 (July 2025)
Verlag: 
IU Internationale Hochschule, Erfurt
Zusammenfassung: 
Accounting fraud poses significant financial and reputational risks for organizations. Traditional detection methods - such as manual audits and red-flag indicators - struggle to keep pace with the growing volume and complexity of financial data. In contrast, artificial intelligence technologies, including machine learning, anomaly detection, and natural language processing, offer scalable, realtime solutions to identify suspicious activity more efficiently. This paper compares conventional fraud detection techniques with AI-driven approaches, highlighting their respective strengths and limitations in terms of accuracy, efficiency, scalability, and adaptability. While AI enables faster and more comprehensive analysis, it also raises challenges related to data quality, algorithmic bias, and transparency. Ethical and legal considerations, including data privacy and compliance with regulations, are crucial for responsible implementation. The paper concludes with strategic recommendations for adopting AI-based fraud detection systems - emphasizing AI readiness, robust data governance, and human oversight. With a thoughtful approach, AI has the potential to significantly enhance the detection and prevention of accounting fraud.
Schlagwörter: 
Artificial Intelligence
Fraud Detection
Machine Learning
Anomaly Detection
Natural LanguageProcessing
Data Quality
Financial Fraud
Auditor Oversight
Transparency
AI Implementation
Persistent Identifier der Erstveröffentlichung: 
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
473.53 kB





Publikationen in EconStor sind urheberrechtlich geschützt.