Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/32181
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDüring, B.en_US
dc.contributor.authorToscani, Giuseppeen_US
dc.date.accessioned2007-09-18en_US
dc.date.accessioned2010-05-14T12:00:43Z-
dc.date.available2010-05-14T12:00:43Z-
dc.date.issued2007en_US
dc.identifier.piurn:nbn:de:bsz:352-opus-42923-
dc.identifier.urihttp://hdl.handle.net/10419/32181-
dc.description.abstractIn this paper, we introduce and discuss the passage to hydrodynamic equations for kinetic models of conservative economies, in which the density of wealth depends on additional parameters, like the propensity to invest. As in kinetic theory of rarefied gases, the closure depends on the knowledge of the homogeneous steady wealth distribution (the Maxwellian) of the underlying kinetic model. The collision operator used here is the Fokker-Planck operator introduced by J.P. Bouchaud and M. Mezard in [4], which has been recently obtained in a suitable asymp- totic of a Boltzmann-like model involving both exchanges between agents and speculative trading by S. Cordier, L. Pareschi and one of the authors [11]. Numerical simulations on the fluid equations are then proposed and analyzed for various laws of variation of the propensity.en_US
dc.language.isoengen_US
dc.publisher|aCoFE |cKonstanzen_US
dc.relation.ispartofseries|aDiscussion paper series // Zentrum für Finanzen und Ökonometrie, Universität Konstanz |x2007,06en_US
dc.subject.ddc330en_US
dc.subject.keywordWealth and income distributionsen_US
dc.subject.keywordBoltzmann equationen_US
dc.subject.keywordhydrodynamicsen_US
dc.subject.keywordEuler equationsen_US
dc.subject.stwVerteilungstheorieen_US
dc.subject.stwEconophysicsen_US
dc.subject.stwTheorieen_US
dc.titleHydrodynamics from kinetic models of conservative economiesen_US
dc.type|aWorking Paperen_US
dc.identifier.ppn543863948en_US
dc.rightshttp://www.econstor.eu/dspace/Nutzungsbedingungen-

Files in This Item:
File
Size
348.14 kB





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.